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1. The Need for Video Sensors

● Main bottlenecks of traffic conflict techniques
– collection cost,
– reliability and subjectivity of human observers.

● Advantages of video sensors
– they are easy to install,
– they can provide rich traffic description (e.g. 

vehicle tracking), 
– they can cover large areas,
– they are cheap sensors.

● Computer vision is required to interpret video 
data. 
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1. A Modular System

●Motion Patterns
●Volume, Origin-
Destination Counts
●Driver Behavior...

Trajectory Database Interaction Database

●Traffic Conflict 
Detection
●Exposure Measures
●Interacting 
Behavior...

Image Sequence

Interpretation 
Modules
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2. Feature-based Vehicle 
Detection and Tracking

● Extension of the feature-based tracking 
algorithm by Beymer et al. (1997) to 
intersections (CRV 06):
● Accuracy between 84.7 % and 94.4 % on 3 sets 

of sequences.

Demo
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3. Road Safety Analysis
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3.1 Traffic Conflicts

● Traffic conflicts are characterized by
– road users on a collision course,
– and at least one emergency evasive action.

● Focus on the collision course: "unless the 
speed and/or the direction of the road users 
changes, they will collide".
– movement extrapolation hypotheses are 

required.
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3.1 The Possibility and 
Probability of Collision

● Given 2 interacting road users, various chain 
of events can lead them to collide. 

● If a collision is possible, the collision 
probability can be computed, as the sum of 
the probability of all chain of events that can 
lead to a collision. 

● The collision probability is a (the ?) severity 
indicator.

● "Better" definition of a collision course. 
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3.1 Computation of the Collision 
Probability
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3.1 Simple Example
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3.2 Motion Patterns

● How to predict road users' movements to 
compute the collision probability ?

● Road users do not move randomly. Typical 
road users movements, traffic motion 
patterns, can be learnt from the observation 
of traffic data.

● Incremental learning of trajectory prototypes. 
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4. Experimental Results
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4. Motion Patterns

128 prototype trajectories
(47084 trajectories)

Video

58 prototype trajectories
(2941 trajectories)
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4. Traffic Conflicts

Demo
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4. Collision Probability
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Conclusion

● Framework for automated traffic data 
collection, and specifically traffic safety data.

● Work in progress:
– improve vehicle detection and tracking: detect 

shadows, estimate vehicle size.
● Need for more data:

– other sources,
– artificial data,
– interactive labeling, active learning.
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Annex
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2. Vehicle Detection and 
Tracking

● 4 categories of methods:
– Model-based tracking (often using 3D models),
– Blob-based tracking (often using 

background/foreground segmentation),
– Contour-based tracking,
– Feature-based tracking.

● Feature-based tracking was chosen since
– it is the most readily available method (Kanade 

Lucas Tomasi implementation in Stan 
Birchfield's or Intel OpenCV Library),

– it is robust to partial occlusion, variable lighting 
conditions, and requires no special initialization.
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3.2 Motion Pattern Learning

● Similarly to trajectory clustering algorithms, a 
method to learn motion patterns must 
address three problems: 
– choose a suitable data representation of motion 

patterns,
– define a distance or similarity measure between 

trajectories or between trajectories and motion 
patterns,

– define a method to update the motion patterns.
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3. Learning Motion Patterns and 
Sequential Data Clustering

● Sequence similarity / distance.
● ex: Euclidean distance, edit distance, DTW, 

LCSS.
● Extract a set of features for each sequences, 

for use with traditional fixed length vector-
based clustering methods.

● ex: leading Fourier coefficients.
● Statistical sequence clustering: sequences 

are similar if they have a common similarity 
to a model, computed by the likelihood 
P(Observation|Model).
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3.1 HMM-based Motion Pattern 
Learning

● HMM-based 
clustering of 
trajectories
– iterative K-

means 
approach,

– discard small 
clusters.

assign 
trajectories to 

HMMs

train each 
HMM on its 
assigned 

trajectories
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3.1 Semi-Supervised Learning

● An extra training step uses some available 
traffic conflict instances
– to adapt HMMs (means and covariances of the 

Gaussian output distributions),
– to memorize "conflicting" models. 

● Detection process
– interacting vehicles (close and nearing each 

other) are detected,
– the 2 trajectories are assigned to models,
– if the models were memorized as conflicting, a 

traffic conflict is detected.

Demo
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3.1 Limits

● HMM-based 
clustering is 
very sensitive 
to 
initialization.

● In reality, 
there is a 
continuum of 
traffic events.



June 28th 200724

3.2 Longest Common 
Subsequence Similarity


