Automated Road Safety Analysis Based on Video Sensors

Nicolas Saunier, Tarek Sayed and Clark Lim

UBC Transportation Engineering Group

Outline

- 1.Introduction
- 2.Feature-based vehicle detection and tracking
- 3. Traffic Conflicts and Collision Probability
- 4. Experimental Results

1. The Need for Video Sensors

- Main bottlenecks of traffic conflict techniques
 - collection cost,
 - reliability and subjectivity of human observers.
- Advantages of video sensors
 - they are easy to install,
 - they can provide rich traffic description (e.g. vehicle tracking),
 - they can cover large areas,
 - they are cheap sensors.
- Computer vision is required to interpret video data.

1. A Modular System

Trajectory Database Interaction Database

- Motion Patterns
- Volume, Origin-Destination Counts
- Driver Behavior...

- •Traffic Conflict Detection
- Exposure Measures
- Interacting Behavior...

Interpretation | Modules

2. Feature-based Vehicle Detection and Tracking

 Extension of the feature-based tracking algorithm by Beymer et al. (1997) to intersections (CRV 06):

Demo

 Accuracy between 84.7 % and 94.4 % on 3 sets of sequences.

3. Road Safety Analysis

3.1 Traffic Conflicts

- Traffic conflicts are characterized by
 - road users on a collision course,
 - and at least one emergency evasive action.
- Focus on the collision course: "unless the speed and/or the direction of the road users changes, they will collide".
 - movement extrapolation hypotheses are required.

3.1 The Possibility and Probability of Collision

- Given 2 interacting road users, various chain of events can lead them to collide.
- If a collision is possible, the collision probability can be computed, as the sum of the probability of all chain of events that can lead to a collision.
- The collision probability is a (the ?) severity indicator.
- "Better" definition of a collision course.

3.1 Computation of the Collision Probability

$$P(Collision|A_{1,t \le t_0}, A_{2,t \le t_0}) = \sum_{i,j} P(H_i|A_{1,t \le t_0}) P(H_j|A_{2,t \le t_0}) e^{-\frac{(t_{i,j} - t_0)^2}{2\sigma^2}}$$

where $P(H_i|A_{1,t\leq t_0})$ is the probability of road user A_1 to move according to extrapolation hypothesis H_i (same for A_2 and H_j).

3.1 Simple Example

$$P(Collision) = 0.4 \times 0.7 \times e^{-\frac{(t_1 - t_0)^2}{2\sigma^2}} + 0.4 \times 0.3 \times e^{-\frac{(t_2 - t_0)^2}{2\sigma^2}}$$

3.2 Motion Patterns

- How to predict road users' movements to compute the collision probability?
- Road users do not move randomly. Typical road users movements, traffic motion patterns, can be learnt from the observation of traffic data.
- Incremental learning of trajectory prototypes.

4. Experimental Results

4. Motion Patterns

128 prototype trajectories (47084 trajectories)

58 prototype trajectories (2941 trajectories)

4. Traffic Conflicts

Demo

4. Collision Probability

June 28th 2007

Conclusion

- Framework for automated traffic data collection, and specifically traffic safety data.
- Work in progress:
 - improve vehicle detection and tracking: detect shadows, estimate vehicle size.
- Need for more data:
 - other sources,
 - artificial data,
 - interactive labeling, active learning.

Annex

June 28th 2007

2. Vehicle Detection and Tracking

- 4 categories of methods:
 - Model-based tracking (often using 3D models),
 - Blob-based tracking (often using background/foreground segmentation),
 - Contour-based tracking,
 - Feature-based tracking.
- Feature-based tracking was chosen since
 - it is the most readily available method (Kanade Lucas Tomasi implementation in Stan Birchfield's or Intel OpenCV Library),
 - it is robust to partial occlusion, variable lighting conditions, and requires no special initialization.

3.2 Motion Pattern Learning

- Similarly to trajectory clustering algorithms, a method to learn motion patterns must address three problems:
 - choose a suitable data representation of motion patterns,
 - define a distance or similarity measure between trajectories or between trajectories and motion patterns,
 - define a method to update the motion patterns.

3. Learning Motion Patterns and Sequential Data Clustering

- Sequence similarity / distance.
- ex: Euclidean distance, edit distance, DTW, LCSS.
- Extract a set of features for each sequences, for use with traditional fixed length vectorbased clustering methods.
- ex: leading Fourier coefficients.
- Statistical sequence clustering: sequences are similar if they have a common similarity to a model, computed by the likelihood P(Observation|Model).

3.1 HMM-based Motion Pattern Learning

- HMM-based clustering of trajectories
 - iterative Kmeans approach,
 - discard small clusters.

train each HMM on its assigned trajectories

assign trajectories to HMMs

3.1 Semi-Supervised Learning

- An extra training step uses some available traffic conflict instances
 - to adapt HMMs (means and covariances of the Gaussian output distributions),
 - to memorize "conflicting" models.
- Detection process
 - interacting vehicles (close and nearing each other) are detected,
 - the 2 trajectories are assigned to models,
 - if the models were memorized as conflicting, a traffic conflict is detected.

3.1 Limits

α	CD	Uncertain TC	FA
"0"	10	17	38
0.05	10	13	6
0.10	10	13	10
0.15	10	12	6
0.20	10	3	3
0.25	10	5	2
0.30	10	5	2
0.35	10	4	1
0.40	10	4	0
0.45	10	4	0
0.50	10	3	0

- HMM-based clustering is very sensitive to initialization.
- In reality, there is a continuum of traffic events.

3.2 Longest Common Subsequence Similarity

Let $Head(T_i)$ be the sequence $\{t_{i,1},...t_{i,n-1}\}$. Given a real number $0 < \epsilon < 1$, the LCSS similarity of two trajectories T_i and T_j of respective lengths m and n is defined as

$$LCSS_{\epsilon}(T_i, T_j) = \begin{cases} 0 & \textit{if } m = 0 \\ 0 & \textit{if } n = 0 \\ 1 + LCSS_{\epsilon}(Head(T_i), Head(T_j)) & \textit{if } \text{the points match} \\ max(LCSS_{\epsilon}(Head(T_i), T_j), LCSS_{\epsilon}(T_i, Head(T_j))) & \textit{otherwise} \end{cases}$$

Two points t_{i,k_1} and t_{j,k_2} match if $|x_{i,k_1}-x_{j,k_2}|<\epsilon$ and $|y_{i,k_1}-y_{j,k_2}|<\epsilon$.