Department of Civil Engineering
The University of British Columbia

TRUCK SIGNAL PRIORITY

Nicolas Saunier Wook Kang

Why Truck Priority?

$>$ Reduce the Cost of Goods Transportation
$>$ Reduce Red Light Running

- Encourage Trucks to use specific Truck Routes
$>$ Reduce Emission

Objectives

> Deliverables:
o a prototype system demonstrating the concept,
o a system evaluation to determine potential full-scale system benefits.

Outline

1. System for the detection and tracking of trucks using video sensors.
2. Evaluating different signal priority strategies using micro-simulation.

Video Sensors

> Video sensors have distinct advantages:

- they are easy to install (or can be already installed),
o they are inexpensive,
o they can provide rich traffic description (e.g. road user tracking),
o they can cover large areas,
o they allow verification at any later stage.

Detecting and Tracking Trucks

Road User Trajectories

Background Model

Road User Classification

Labeled Truck Images

Truck Classifier

Learning to Identify Trucks

> Based on shape features extracted through background subtraction.

$$
m_{p, q}=\iint f(x, y) x^{p} y^{q} d x d y
$$

$f(x, y)=1$ if the pixel at (x, y) is in the foreground 0 if the pixel at (x, y) is in the background
$>$ Using machine learning to learn a binary classifier (truck vs. other road users).

Experimental Results

ROC Curve

ROC Curve

ROC Curve

ROC Curve

Experimental Results

$>$ The recall for trucks reaches 78\% to 95\%, with a false alarm rate below the 0.5% value used for the system simulation.

Simulation Model

> Study Corridor

- Knight Street (King Edward - 57 ${ }^{\text {th }}$ Ave)

Major Truck Route
3 Intersections (2 Two phased, 1 Four phased)
$>$ Simulation Software

- Vissim
- VisVap

Network

TSP Strategy

 O$>$ Green Extension
> Red Truncation

Conventional System

$>$ No Prediction
$>$ Two Detectors
o Check-in: 50-100 m upstream of the intersection
o Check-out: immediately after the intersection

Conventional System

> Shortcomings

- Do not count in the travel time from a check-in detector to the intersection.
Opportunities for Green Extension can be missed.
- A queue may extend beyond a check-in detector.
Do not call for red truncation sufficiently early to dissipate the queue.

Truck Detection

$>$ Video Sensor
$>$ Detect trucks from 300 meters.
> Continuously track trucks.

- Simulated by normal detectors in 10 meter spacing.
> Consider the closest truck only.
- The next truck will be considered after the closest truck checks out.

Detection Errors

$>$ Missed Truck

- 10% of trucks are assumed to be not classified as trucks.
$>$ False Detection
- 0.5\% of non-truck road users are assumed to be classified as trucks.

Travel Time Prediction

$>$ Detect trucks from 300 meters ahead of an intersection and predict arrival time.

- Travel Time = Distance / Speed
> Continuously track trucks and update prediction.

Green Extension

> Extend Green if a Truck will arrive within the Maximum Extension Limit.
> Cancel Green Extension if the truck will not arrive within the Limit according to Prediction Update
$>$ Terminate when the truck checks out.

Red Truncation

$>$ Truncate red if a truck will arrive after the maximum green extension Limit.
$>$ Calculate queue dissipation time and start red truncation when required.

Example

$>$ Intersection 7: Knight St. and 49th Ave.
> Signal Timing

- 80 sec cycle length, 2 phases (Ф1 Truck phase)

80
o Maximum Green Extension: 15 sec
o Maximum Red Truncation: 15 sec

Example: Green Extension

Sim	Cycle Sec	Dist- Sec	Travel ance

Event

561	0			Start of Green
588	27	290	19.0	Truck detected. 9 seconds to normal green end time.
597	36	160	10.9	Normal green end time. The truck is still 160 m away.
603	42	70	4.7	Conventional system would detect the truck 6 seconds after the normal green end time, only 5 seconds before arrival time.
608	47	0	0	The truck checks out and green end. Green was extended for 11 seconds.

Example: Red Truncation

Sim	Cycle Sec Sec	Dist- ance	Travel Time

Event

677	36			Start of Red
688	47	300	21.4	Truck detected. 25 seconds to normal red end time.
702	61	110	8.1	Red truncated for 9 seconds. The truck is still 110 m away.
704	63	80	6.2	Conventional system would detect the truck 2 seconds after the time to truncate red, only 6 seconds before arrival time.
707	66	50	5.4	Start of Green
713	72	0	0	The truck checks out after queue dissipation, 11 seconds after red truncation.

Base Case Condition

- Three lanes per direction
- AM Peak hour 8-9AM
- Volume

NB 1,304-1,466 vph
SB 665-1,058 vph

- Truck Volume

NB 47-51 vph
SB 26-42 vph
o Priority Lock: One Cycle Length

Travel Times

Direction	Section	Distance (m)	The Average Travel Time (sec)			The Average Travel Time Change (\%)	
			No TkSP	Conventional TkSP	Advanced TkSP	Conventional TkSP	Advanced TkSP
NB	57th to 47th	1,060	92.5	94.1	89.0	1.67\%	-3.81\%
	47th to 37th	1,023	100.0	103.4	103.1	3.43\%	3.15\%
	37th to 29th	858	92.6	94.7	82.2	2.32\%	-11.20\%
	Total	2,941	285.1	292.2	274.4	2.50\%	-3.77\%
SB	$\begin{aligned} & \text { 29th to } \\ & \text { 37th } \end{aligned}$	858	71.9	68.3	67.8	-5.00\%	-5.66\%
	37th to 47th	1,023	78.7	83.2	85.2	5.66\%	8.26\%
	47th to 57th	1,060	108.3	108.3	110.2	-0.04\%	1.69\%
	Total	2,941	258.9	259.8	263.2	0.32\%	1.65\%

Delay

Intersection		Approach	Average Delays and Volumes						Delay Change (\%)		
		No TkSP	Conventional TkSP		Advanced TkSP		Conventional TkSP	Advanced TkSP			
No.	Streets		Delay(s)	Volume	Delay(s)	Volume			Delay(s)	Volume	
3	Knight and E33rd		NB	28.6	1,472	37.7	1,481	25.8	1,465	31.7\%	-9.6\%
		SB	10.5	709	9.0	710	9.4	710	-14.4\%	-11.2\%	
		Knight St.	11.4	2,181	14.2	2,190	10.2	2,175	24.9\%	-10.0\%	
		EB	17.5	663	15.6	663	18.6	666	-10.4\%	6.6\%	
		WB	20.2	991	17.7	991	21.2	992	-12.1\%	5.0\%	
		Cross Road	9.5	1,655	8.4	1,653	10.1	1,658	-11.5\%	5.6\%	
		Total	21.2	3,836	23.5	3,843	20.3	3,833	10.8\%	-3.9\%	
5	Knight and E41st	NB	27.9	1,595	32.3	1,597	30.3	1,584	15.7\%	8.4\%	
		SB	9.0	899	13.3	901	13.0	901	47.6\%	44.0\%	
		Knight St.	10.6	2,494	12.7	2,498	12.0	2,485	20.6\%	13.7\%	
		EB	23.1	1,029	21.8	1,028	23.5	1,030	-5.4\%	2.1\%	
		WB	28.9	1,380	27.4	1,377	29.7	1,379	-5.3\%	2.6\%	
		Cross Road	13.2	2,409	12.5	2,405	13.5	2,409	-5.3\%	2.4\%	
		Total	23.7	4,903	25.2	4,904	25.5	4,894	6.3\%	7.4\%	
7	Knight and E49th	NB	19.5	1,586	22.0	1,584	17.1	1,590	12.7\%	-12.5\%	
		SB	11.5	1,090	11.4	1,087	10.6	1,102	-1.1\%	-7.4\%	
		Knight St.	8.1	2,676	8.8	2,671	7.2	2,692	8.8\%	-11.1\%	
		EB	16.7	462	13.9	462	16.7	460	-16.8\%	0.4\%	
		WB	17.8	1,033	15.8	1,034	18.2	1,031	-11.7\%	2.0\%	
		Cross Road	8.7	1,494	7.6	1,495	8.9	1,491	-13.2\%	1.5\%	
		Total	16.7	4,171	16.8	4,166	15.6	4,183	0.7\%	$\underline{-6.4 \%}$	
Network Total			20.7	12,910	22.0	12,913	20.8	12,910	6.3\%	0.6\%	

Performance for: 70\% volume, 1\% truck, No priority lock

Direction

Conclusion

> Decrease HGV travel time.
$>$ Do not increase all vehicle travel time when traffic volume is moderate to high.
$>$ Performance is better when

- traffic volume is less than that of peak hour;
o truck volume is less than one in a cycle;
o priority is not locked.

Further Study: Potential Improvement

$>$ Gradual change of signal timing over 1-2 cycle.

- Requires early detection and prediction.
- Requires travel time prediction model for roadway sections in which there are multiple intersections.

Predict travel time including intersection delay Use signal time data

