# Large Scale Automated Analysis of Vehicle Interactions and Collisions TRB Annual Meeting

Nicolas Saunier, Tarek Sayed and Karim Ismail nicolas.saunier@polymtl.ca





January 12th 2010

#### **Outline**

Motivation

A Probabilistic Framework for Automated Road Safety Analysis

Experimental Results using Video Data

Conclusion

#### Observation

- 1. Most approaches to road safety analysis do not rely on microscopic data collected in the field.
- 2. There are well-known issues with the traditional use of historical collision data:
  - attribution, rarity, quality, ethics
- 3. Davis and Morris [Davis and Morris, 2009] predict that the statistical models proposed in the Highway Safety Manual "will be replaced by models explicitly describing mechanisms underlying crash occurrence".

#### Motivation

- Need for
  - proactive methods for road safety analysis relying on surrogate safety measures
  - more use of microscopic traffic data
- Surrogate safety measures, e.g. in traffic conflict studies, are collected with various levels of automation.
- The main bottleneck for these methods is that data is still mostly collected manually.

#### The Collision Course

"An observational situation in which two or more road users approach each other in space and time to such an extent that a collision is imminent if their movements remain unchanged"
[Amundsen and Hydén, 1977]

- For two interacting road users, many chains of events may lead to a collision.
- Studying the probability of collision requires the ability to predict road users' future positions.
- Positions are predicted independently for each road user.

## **Extrapolation Hypothesis**



An extrapolation hypothesis is defined by an observed trajectory H and an associated probability P(H) that a road users will follow the trajectory [Saunier et al., 2007].

## Probability of Collision

- The road users' predicted positions at each future instant
   t ≥ t<sub>0</sub> are enumerated and the N<sub>CP</sub> collision points CP<sub>n</sub> are
   identified.
- The probability of collision is computed by summing the probabilities of reaching each collision point.

$$P(Collision(U_i, U_j)) = \sum_{1 \le n \le N_{CP}} P(Collision(CP_n))$$

 The expected time to collision (TTC) can also be computed in this framework if there is at least one collision point (P(Collision(U<sub>i</sub>, U<sub>j</sub>)) > 0):

$$TTC(U_i, U_j, t_0) = \frac{\sum_{1 \leq n \leq N_{CP}} P(Collision(CP_n)) \ t_n}{P(Collision(U_i, U_j))}$$





$$P(Collision(CP_1)) = P(H_{1,1})P(H_{3,1})$$



$$P(Collision(CP_2)) = P(H_{1,2})P(H_{3,1})$$





## **Interaction Categories**

Categories: majority of instants in a given configuration



## A Large Dataset

- Videos kept for a few seconds before and after the sound-based automatic detection of an interaction of interest
  - 229 traffic conflicts
  - 101 collisions
  - The existence of an interaction or its severity is not always obvious
  - The interactions recorded in this dataset involve only motorized vehicles
  - Limited quality of the video data: resolution, compression, weather and lighting conditions
- Calibration done using the tool developed by Karim Ismail at UBC [Ismail et al., 2010]



Side conflict



Side conflict



Parallel conflict



Side collision



Side collision



Parallel collision

#### Distribution of Indicators

#### Maximum Collision Probability



#### Minimum TTC



## Spatial Distribution of the Collision Points



## Spatial Distribution of the Collision Points



#### Conclusion

- Tools and framework for automated road safety analysis using video sensors
- Data mining and visualization for safety analysis
- Future work:
  - Improve the accuracy of the location and volume of road users
  - Validation of proactive methods for road safety analysis (Clark Lim and Tarek Sayed at UBC)
  - Understanding and modelling of the mechanisms that lead to accidents (École Polytechnique de Montréal)
- Need for more open science: data and code sharing http://nicolas.saunier.confins.net

Motivation



*Proceedings of the first workshop on traffic conflicts*, Oslo, Norway. Institute of Transport Economics.

Davis, G. A. and Morris, P. (2009). Statistical versus simulation models in safety: Steps toward a synthesis using median crossing crashes. Transportation Research Record: Journal of the Transportation Research Board, 2102:93–100. 09-1989.

Ismail, K., Sayed, T., and Saunier, N. (2010).
Camera calibration for urban traffic scenes: Practical issues and a robust approach.
In Transportation Research Board Annual Meeting

In *Transportation Research Board Annual Meeting Compendium of Papers*, Washington, D.C. 10-2715.

Saunier, N., Sayed, T., and Lim, C. (2007).

# Probabilistic Collision Prediction for Vision-Based Automated Road Safety Analysis.

In The 10<sup>th</sup> International IEEE Conference on Intelligent Transportation Systems, pages 872–878, Seattle. IEEE.