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Observation

1. Most approaches to road safety analysis do not rely on
microscopic data collected in the field.

2. There are well-known issues with the traditional use of
historical collision data:

• attribution, rarity, quality, ethics

3. Davis and Morris [Davis and Morris, 2009] predict that the
statistical models proposed in the Highway Safety Manual
“will be replaced by models explicitly describing
mechanisms underlying crash occurrence”.
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Motivation

• Need for
• proactive methods for road safety analysis relying on

surrogate safety measures
• more use of microscopic traffic data

• Surrogate safety measures, e.g. in traffic conflict studies,
are collected with various levels of automation.

• The main bottleneck for these methods is that data is still
mostly collected manually.
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The Collision Course

“An observational situation in which two or more road
users approach each other in space and time to such
an extent that a collision is imminent if their
movements remain unchanged”
[Amundsen and Hydén, 1977]

• For two interacting road users, many chains of events may
lead to a collision.

• Studying the probability of collision requires the ability to
predict road users’ future positions.

• Positions are predicted independently for each road user.
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Extrapolation Hypothesis
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An extrapolation hypothesis is defined by an observed
trajectory H and an associated probability P(H) that a road
users will follow the trajectory [Saunier et al., 2007].
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Probability of Collision
• The road users’ predicted positions at each future instant

t ≥ t0 are enumerated and the NCP collision points CPn are
identified.

• The probability of collision is computed by summing the
probabilities of reaching each collision point.

P(Collision(Ui , Uj)) =
∑

1≤n≤NCP

P(Collision(CPn))

• The expected time to collision (TTC) can also be computed
in this framework if there is at least one collision point
(P(Collision(Ui , Uj)) > 0):

TTC(Ui , Uj , t0) =

∑
1≤n≤NCP

P(Collision(CPn)) tn
P(Collision(Ui , Uj))
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Simple Example
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Simple Example
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P(Collision(CP1)) = P(H1,1)P(H3,1)
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Simple Example
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P(Collision(CP2)) = P(H1,2)P(H3,1)
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Simple Example
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P(Collision(CP3)) = P(H1,1)P(H2,1)(1− P(Collision(CP1)))
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Simple Example
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P(Collision(CP4)) = P(H1,1)P(H2,2)(1− P(Collision(CP1)))
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Interaction Categories

Categories: majority of instants in a given configuration

head-on rear-end side parallel
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A Large Dataset

• Videos kept for a few seconds before and after the
sound-based automatic detection of an interaction of
interest

• 229 traffic conflicts
• 101 collisions
• The existence of an interaction or its severity is not always

obvious
• The interactions recorded in this dataset involve only

motorized vehicles
• Limited quality of the video data: resolution, compression,

weather and lighting conditions

• Calibration done using the tool developed by Karim Ismail
at UBC [Ismail et al., 2010]



Motivation A Probabilistic Framework for Automated Road Safety Analysis Experimental Results Conclusion

Severity Indicators
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Severity Indicators
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Severity Indicators
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Severity Indicators
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Severity Indicators
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Severity Indicators
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Distribution of Indicators
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Spatial Distribution of the Collision Points
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Spatial Distribution of the Collision Points
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Conclusion

• Tools and framework for automated road safety analysis
using video sensors

• Data mining and visualization for safety analysis
• Future work:

• Improve the accuracy of the location and volume of road
users

• Validation of proactive methods for road safety analysis
(Clark Lim and Tarek Sayed at UBC)

• Understanding and modelling of the mechanisms that lead
to accidents (École Polytechnique de Montréal)

• Need for more open science: data and code sharing
http://nicolas.saunier.confins.net

http://nicolas.saunier.confins.net
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Questions ?
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