
How Many Ways to Crash?
TRB Annual Meeting

Nicolas Saunier
nicolas.saunier@polymtl.ca

January 13th 2010

Collaboration with Karim Ismail, Clark Lim and Tarek Sayed
University of British Columbia



Motivation Probabilistic Framework for Automated Road Safety Analysis Experimental Results Conclusion

Outline

Motivation

Probabilistic Framework for Automated Road Safety Analysis

Experimental Results using Video Data

Conclusion



Motivation Probabilistic Framework for Automated Road Safety Analysis Experimental Results Conclusion

Road Safety Analysis

• Limits of the traditional approach based on historical
collision data:

• Problems of availability and quality,
• Insufficient data to understand the mechanisms that lead to

collisions,
• Reactive approach.

• Need for proactive approaches and surrogate safety
measures that do not depend on the occurrence of
collisions.
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Surrogate Safety Measures

• Research on surrogate safety measures that
• bring complementary information,
• are related to traffic events that are more frequent than

collisions and can be observed in the field,
• are correlated to collisions, logically and statistically.

• A traffic conflict is “an observational situation in which two
or more road users approach each other in space and time
to such an extent that a collision is imminent if their
movements remain unchanged”
[Amundsen and Hydén, 1977].
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The Safety/Severity Hierarchy
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The Collision Course

• A traffic conflict is “an observational situation in which two
or more road users approach each other in space and time
to such an extent that a collision is imminent if their
movements remain unchanged”.

• For two interacting road users, many chains of events may
lead to a collision.

• It is possible to estimate the probability of collision if one
can predict the road users’ future positions.



Motivation Probabilistic Framework for Automated Road Safety Analysis Experimental Results Conclusion

What about Evasive Actions?

• Necessary by construction for traffic conflicts.
• The severity of a traffic conflict does not depend on the

characteristics of the evasive action (e.g. the Swedish
traffic conflict technique).

• The emphasis on evasive actions is most likely related to
the traffic conflict collection techniques: emergency
evasive actions are relatively easy to identify by observers
in the field.

• Future work: understand why collisions are avoided, and
the link between interactions with and without a collision.
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Movement Prediction

• Learn road users’ motion patterns (including frequencies),
represented by actual trajectories called prototypes

• Match observed trajectories to prototypes and extrapolate
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A Simple Example
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Collision Points

Using of a finite set of extrapolation hypotheses, enumerate the
collision points CPn. Severity indicators can then be computed:

P(Collision(Ui , Uj)) =
∑

n

P(Collision(CPn))

TTC(Ui , Uj , t0) =

∑
n P(Collision(CPn)) tn
P(Collision(Ui , Uj))



Motivation Probabilistic Framework for Automated Road Safety Analysis Experimental Results Conclusion

Motion Pattern Learning

Traffic Conflict Dataset, Vancouver Reggio Calabria, Italy
58 prototype trajectories 58 prototype trajectories

(2941 trajectories) (138009 trajectoires)
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Road User Tracking
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Motion Prediction
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Motion Prediction
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Motion Prediction
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The Severity Indicators

2 3 4 5 6
Time (second)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
C

o
lli

si
o
n
 P

ro
b
a
b
ili

ty

2 3 4 5 6
Time (second)

0.5

1.0

1.5

2.0

2.5

3.0

T
T
C

 (
se

co
n
d
)

Parallel conflict, Kentucky dataset



Motivation Probabilistic Framework for Automated Road Safety Analysis Experimental Results Conclusion

Road User Tracking
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Motion Prediction
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Motion Prediction
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Motion Prediction
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The Severity Indicators
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Distribution of Severity Indicators
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Distribution of Severity Indicators (2)
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Spatial Distribution of the Collision Points
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Spatial Distribution of the Collision Points
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Conclusion

• Tools and framework for automated road safety analysis
using video sensors

• Data mining and visualization for safety analysis
• Future work:

• Validation of proactive methods for road safety analysis
(Clark Lim and Tarek Sayed at UBC)

• Understanding and modelling of the mechanisms that lead
to accidents (École Polytechnique de Montréal)

• Need for more open science: data and code sharing
http://nicolas.saunier.confins.net

http://nicolas.saunier.confins.net
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Questions ?
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Rasmussen, C. E., Rätsch, G., Schölkopf, B., Smola, A.,
Vincent, P., Weston, J., and Williamson, R. (2007).
The need for open source software in machine learning.
Journal on Machine Learning Research, 8:2443–2466.


	Motivation
	Probabilistic Framework for Automated Road Safety Analysis
	Experimental Results using Video Data
	Conclusion

