Carleton
${ }^{1}$ École Polytechnique de Montréal, ${ }^{2}$ Carleton University, ${ }^{3}$ Université Paris Est, LEPSIS, IFSTTAR, ${ }^{4}$ University of British Columbia

Introduction

aWalking is a key non-motorized mode of travel and a vital component of most trips
-Walking has traditionally received research and practice focus secondary to motorized modes
aThere is a lack of pedestrian data, in particular microscopic data, to meet the analysis and modeling needs
-Distributions based on empirical measures are crucial for studies trying to estimate the impact of a shift from motorized modes to active transportation on the level of physical activity

Objective: extract automatically pedestrian stride frequency and length from video data collected non-intrusively in outdoor urban environments. Pedestrian walking gait is usually described by the relationship $v=f_{x} l$, with the following walking parameters Dthe walking velocity v
Dthe vertical stride frequency f (number of times a foot touches the ground per time unit)
Dthe stride length /

Relevant Work

-Biomechanics and transportation research
\square Structural engineering: footbridge dynamic behavior under human loading (London Millennium Footbridge closed in 2000) aStride length and frequency are not commonly measured, even less automatically and non-intrusively in the field

Walking parameter	Range of the mean	Range of the standard deviation
Walking speed $(\mathrm{m} / \mathrm{s})$	$1.19-1.60$	$0.15-0.63$
Stride frequency (Hz)	$1.82-2.0$	$0.11-0.186$
Stride length (m)	$0.75-0.768$	$0.07-0.098$

From Crowd-structure interaction in lively footbridges under synchronous lateral excitation: A literature review. Venuti, F. and Bruno, L. 3, 2009, Physics of Life Reviews, Vol. 6, pp. 176-206

Observation: speed fluctuates at each stride

Sample data from Automated Collection Of Pedestrian Data Using Computer Vision Techniques. Ismail, K., Sayed, T. and Saunier, N. TRB Annual Meeting , 2009

Proposed Method

Another Cue to Classify Pedestrians and Motorized Vehicles

($n_{\text {oscillations: }}$: number of times per second that the speed profile goes through its mean value)

Experimental Validation

Dataset	RMSE for stride frequency $(H z)$	RMSE for stride length (\boldsymbol{m})	Number of pedestrians with calculable stride frequency
Rouen	0.170	0.061	$101 / 102$
(France)	(0.123)	(0.040)	(75)
Vancouver	0.161	0.057	$42 / 50$
(Canada)	(0.090)	(0.030)	(11)

Performance Evaluation

Confusion Matrix for Road User Classification

	Type predicted by the classification method		
True type	Motorized vehicles	Pedestrians	Unknown
Motorized vehicles	87	2	5
Pedestrians	6	95	1

Experimental Results

Acknowledgements: the data was collected in the French National project SICAP from PISTES framework, sponsored by the Road Safety
Foundation. The authors wish to thank David Doucet from the CETE-NC (Rouen, France) for the video collection, and Professor Christian Cardinal (École Polytechnique de Montréal) for his help with the Fourier analysis.

