Automated Surrogate Road Safety Analysis CIISE Distinguished Seminar Series, Concordia University

Nicolas Saunier nicolas.saunier@polymtl.ca

November 14th 2013

Outline

Motivation

Probabilistic Framework for Automated Road Safety Analysis

Experimental Results using Video Data

Conclusion

Outline

Motivation

Probabilistic Framework for Automated Road Safety Analysis

Experimental Results using Video Data

Conclusion

A World Health Issue

Over 1.2 million people die each year on the world's roads, and between 20 and 50 million suffer non-fatal injuries. In most regions of the world this epidemic of road traffic injuries is still increasing. (Global status report on road safety, World Health Organization, 2009)

A World Health Issue

|--|

RANK	LEADING CAUSE	%
1	Ischaemic heart disease	12.2
2	Cerebrovascular disease	9.7
3	Lower respiratory infections	7.0
4	Chronic obstructive pulmonary disease	5.1
5	Diarrhoeal diseases	3.6
6	HIV/AIDS	3.5
7	Tuberculosis	2.5
8	Trachea, bronchus, lung cancers	2.3
9	Road traffic injuries	2.2
10	Prematurity and low birth weight	2.0
11	Neonatal infections and other	1.9
12	Diabetes mellitus	1.9
13	Malaria	1.7
14	Hypertensive heart disease	1.7
15	Birth asphyxia and birth trauma	1.5
16	Self-inflicted injuries	1.4
17	Stomach cancer	1.4
18	Cirrhosis of the liver	1.3
19	Nephritis and nephrosis	1.3
20	Colon and rectum cancers	1.1

TOTAL 2030				
	RANK	LEADING CAUSE		
	1	Ischaemic heart disease	12.2	
	2	Cerebrovascular disease	9.7	
	3	Chronic obstructive pulmonary disease	7.0	
	4	Lower respiratory infections	5.1	
1	5	Road traffic injuries	3.6	
	6	Trachea, bronchus, lung cancers	3.5	
	7	Diabetes mellitus	2.5	
	8	Hypertensive heart disease	2.3	
	9	Stomach cancer	2.2	
	10	HIV/AIDS	2.0	
	11	Nephritis and nephrosis	1.9	
	12	Self-inflicted injuries	1.9	
	13	Liver cancer	1.7	
	14	Colon and rectum cancer	1.7	
	15	Oesophagus cancer	1.5	
	16	Violence	1.4	
	17	Alzheimer and other dementias	1.4	
	18	Cirrhosis of the liver	1.3	
	19	Breast cancer	1.3	
	20	Tuberculosis	1.1	

Source: World health statistics 2008 (http://www.who.int/whosis/whostat/2008/en/index.html)

Safety

- Safety is characterized by the absence of accidents
- The term "accident" is usually avoided in order to highlight their predictable and preventable nature: collision or crashes are preferred
- Safety is defined as the number of collisions expected to occur at a given location per unit of time, where "expected" refers to "the average in the long run if it were possible to freeze all prevailing conditions that affect safety" [Hauer et al., 1988]

The Risk of Collision

Would you consider that the risk associated with rolling a dice and playing the Russian roulette are the same?

The Risk of Collision

Would you consider that the risk associated with rolling a dice and playing the Russian roulette are the same? Would you consider that the risk associated with a collision involving two cars, or a car and a pedestrian are the same (other things being equal)?

The Risk of Collision

Would you consider that the risk associated with rolling a dice and playing the Russian roulette are the same?

Would you consider that the risk associated with a collision involving two cars, or a car and a pedestrian are the same (other things being equal)?

The concept of risk associated with an event involves two dimensions:

- the probability of the event
- the consequences of the event

In mathematical terms, the risk corresponds to the expected value of a random variable measuring the consequence of the event

Methods for Road Safety Analysis

There are two main categories of methods, whether they are based on the observation of traffic events or not

- Traditional road safety analysis relying on historical collision data
 - "Accident analysis is a desk tool, not a field tool" (C. Hydén)
- Vehicular accident reconstruction providing in-depth collision data

Methods for Road Safety Analysis

There are two main categories of methods, whether they are based on the observation of traffic events or not

- Traditional road safety analysis relying on historical collision data
 - "Accident analysis is a desk tool, not a field tool" (C. Hydén)
- Vehicular accident reconstruction providing in-depth collision data
- 3. Real-time collision-prone location identification
- 4. Naturalistic driving studies
- 5. Surrogate safety analysis

Shortcomings of Traditional Road Safety Analysis

Historical collision data is collected after the occurrence of the collision. It suffers from the following issues [Ismail, 2010]

- 1. difficult attribution of collisions to a cause
 - reports are skewed towards the attribution of responsibility, not the search for the causes that led to a collision

Shortcomings of Traditional Road Safety Analysis

Historical collision data is collected after the occurrence of the collision. It suffers from the following issues [Ismail, 2010]

- 1. difficult attribution of collisions to a cause
 - reports are skewed towards the attribution of responsibility, not the search for the causes that led to a collision
- 2. small data quantity

Shortcomings of Traditional Road Safety Analysis

Historical collision data is collected after the occurrence of the collision. It suffers from the following issues [Ismail, 2010]

- 1. difficult attribution of collisions to a cause
 - reports are skewed towards the attribution of responsibility, not the search for the causes that led to a collision
- 2. small data quantity
- 3. limited quality of the data reconstituted after the event, with a bias towards more damaging collisions

Traditional Road Safety Analysis is Reactive

► The following paradox ensues: safety analysts need to wait for accidents to happen in order to prevent them

Traditional Road Safety Analysis is Reactive

- ► The following paradox ensues: safety analysts need to wait for accidents to happen in order to prevent them
- There is a need for proactive methods for road safety analysis, i.e. that do not rely on the occurrence of collisions. The recent new keyword is surrogate safety analysis

Surrogate Measures of Safety

Need for surrogate safety measures that

bring complementary information

Surrogate Measures of Safety

Need for surrogate safety measures that

- bring complementary information
- are related to traffic events that are more frequent than collisions and can be observed in the field

Surrogate Measures of Safety

Need for surrogate safety measures that

- bring complementary information
- are related to traffic events that are more frequent than collisions and can be observed in the field
- are correlated to collisions, logically and statistically

Traffic Conflicts

- Traffic conflicts have received the most attention since their first conceptualization in 1968 in the General Motors Research Laboratories [Perkins and Harris, 1968]
- The accepted definition of a traffic conflict is "an observational situation in which two or more road users approach each other in space and time to such an extent that a collision is imminent if their movements remain unchanged" [Amundsen and Hydén, 1977]
- Traffic Conflict Techniques (TCT)
 - A TCT is a method for traffic safety estimation based on the observation of traffic conflicts [Laureshyn, 2010]
 - The basic hypothesis of TCTs is that accidents and conflicts originate from the same type of processes in traffic and a relation between them can be found
 - TCTs involve observing and evaluating the frequency and severity of traffic conflicts at a given road location by a team of trained observers

A Traffic Conflict

The Safety Hierarchy

- ► An interaction is a situation in which two road users are close enough
- Conflict severity = probability of collision = position in the safety hierarchy

Limitations of Traffic Conflict Techniques

- Limits caused by the manual data collection process
 - Costly manual/semi-automated collection
 - Reliability and subjectivity of human observers
- Mixed validation results in the literature

Motivation

- Need for automated tools to address the shortcomings of reactive diagnosis methods and traffic conflict techniques
- Better understand collision processes and similarities between interactions with and without a collision for improved safety diagnosis

Outline

Motivation

Probabilistic Framework for Automated Road Safety Analysis

Experimental Results using Video Data

Conclusion

A traffic conflict is "an observational situation in which two or more road users approach each other in space and time to such an extent that a collision is imminent if their movements remain unchanged"

- A traffic conflict is "an observational situation in which two or more road users approach each other in space and time to such an extent that a collision is imminent if their movements remain unchanged"
- For two interacting road users, many chains of events may lead to a collision

- A traffic conflict is "an observational situation in which two or more road users approach each other in space and time to such an extent that a collision is imminent if their movements remain unchanged"
- For two interacting road users, many chains of events may lead to a collision
- It is possible to estimate the probability of collision if one can predict the road users' future positions

- A traffic conflict is "an observational situation in which two or more road users approach each other in space and time to such an extent that a collision is imminent if their movements remain unchanged"
- For two interacting road users, many chains of events may lead to a collision
- It is possible to estimate the probability of collision if one can predict the road users' future positions
 - The motion prediction method must be specified

Motion Prediction

- Predict trajectories according to various hypotheses
 - iterate the positions based on the driver input (acceleration and steering): constant velocity, normal adaptation, etc.
 - learn the road users' motion patterns (including frequencies), represented by actual trajectories called prototypes, then match observed trajectories to prototypes and resample
- Advantage: generic method to detect a collision course and measure severity indicators, as opposed to several cases and formulas (e.g. in [Gettman and Head, 2003])

[Saunier et al., 2007, Saunier and Sayed, 2008, Mohamed and Saunier, 2013, St-Aubin et al., 2014]

A Simple Example

Collision Points and Crossing Zones

Using of a finite set of predicted trajectories, enumerate the collision points CP_n and the crossing zones CZ_m . Severity indicators can then be computed:

$$\begin{split} P(\textit{Collision}(\textit{U}_i, \textit{U}_j)) &= \sum_{n} P(\textit{Collision}(\textit{CP}_n)) \\ TTC(\textit{U}_i, \textit{U}_j, t_0) &= \frac{\sum_{n} P(\textit{Collision}(\textit{CP}_n)) \ t_n}{P(\textit{Collision}(\textit{U}_i, \textit{U}_j))} \\ pPET(\textit{U}_i, \textit{U}_j, t_0) &= \frac{\sum_{m} P(\textit{Reaching}(\textit{CZ}_m)) \ |t_{i,m} - t_{j,m}|}{\sum_{m} P(\textit{Reaching}(\textit{CZ}_m))} \end{split}$$

[Saunier et al., 2010, Mohamed and Saunier, 2013]

Outline

Motivation

Probabilistic Framework for Automated Road Safety Analysis

Experimental Results using Video Data

Conclusion

Video Sensors

Video sensors have distinct advantages:

- they are easy to install (or can be already installed)
- they are inexpensive
- they can provide rich traffic description (e.g. road user tracking)
- they can cover large areas
- their recording allows verification at a later stage

Video-based System

Feature-based Road User Tracking in Video Data

Good enough for safety analysis and other applications, including the study of pedestrians and pedestrian-vehicle interactions [Saunier and Sayed, 2006]

Motion Pattern Learning

Traffic Conflict Dataset, Vancouver
58 prototype trajectories
(2941 trajectories)

Reggio Calabria, Italy
58 prototype trajectories
(138009 trajectories)

The Kentucky Dataset

- Video recordings kept for a few seconds before and after the sound-based automatic detection of an interaction of interest
 - 229 traffic conflicts
 - ▶ 101 collisions
 - The existence of an interaction or its severity is not always obvious
 - The interactions recorded in this dataset involve only motorized vehicles
 - Limited quality of the video data: resolution, compression, weather and lighting conditions

[Saunier et al., 2010]

Side conflict

Parallel conflict

Parallel collision

Distribution of Indicators and Agregation

Maximum Collision Probability

Minimum TTC

Spatial Distribution of the Collision Points

Spatial Distribution of the Collision Points

Study Before and After the Introduction of a Scramble Phase

Data collected in Oakland, CA [Ismail et al., 2010]

Distribution of Severity Indicators

Before and After Distribution of the Collision Points

Lane-Change Bans at Urban Highway Ramps

Treated site (with lane marking)
[St-Aubin et al., 2013]

Figure 37 - Conflict analysis Cam20-16-Dorval (Treated).

Lane-Change Bans at Urban Highway Ramps

Figure 27 - Conflict analysis Cam20-16-Dorval (Untreated).

Untreated site (no lane marking) [St-Aubin et al., 2013]

Clustering Severity Indicators

Clustering Severity Indicators

Outline

Motivation

Probabilistic Framework for Automated Road Safety Analysis

Experimental Results using Video Data

 Surogate methods for safety analysis are complementary methods to understand collision factors and better diagnose safety

- Surogate methods for safety analysis are complementary methods to understand collision factors and better diagnose safety
- The challenge is to propose a simple and generic framework for surrogate safety analysis

- Surogate methods for safety analysis are complementary methods to understand collision factors and better diagnose safety
- The challenge is to propose a simple and generic framework for surrogate safety analysis
 - is TTC sufficient to measure interaction severity, or probability of collision?

- Surogate methods for safety analysis are complementary methods to understand collision factors and better diagnose safety
- The challenge is to propose a simple and generic framework for surrogate safety analysis
 - is TTC sufficient to measure interaction severity, or probability of collision?
 - an extra dimension seems conceptually necessary to measure the ability of road users to avoid the collision, e.g. DST (a probability of unsuccessful evasive action) [Mohamed and Saunier, 2013]

 Ongoing work: roundabouts, vulnerable road users (cycle paths, bus stops and pedestrians)

- Ongoing work: roundabouts, vulnerable road users (cycle paths, bus stops and pedestrians)
- Improve the tools for automated data collection (computer vision)

- Ongoing work: roundabouts, vulnerable road users (cycle paths, bus stops and pedestrians)
- Improve the tools for automated data collection (computer vision)
- Need for large amounts of data for the understanding and modelling of collision processes
 - video-based trajectory data collection, naturalistic driving studies (SHRP2)
 - need for data mining and visualization techniques for safety analysis

- Ongoing work: roundabouts, vulnerable road users (cycle paths, bus stops and pedestrians)
- Improve the tools for automated data collection (computer vision)
- Need for large amounts of data for the understanding and modelling of collision processes
 - video-based trajectory data collection, naturalistic driving studies (SHRP2)
 - need for data mining and visualization techniques for safety analysis
- Validation of proactive methods for road safety analysis

- Ongoing work: roundabouts, vulnerable road users (cycle paths, bus stops and pedestrians)
- Improve the tools for automated data collection (computer vision)
- Need for large amounts of data for the understanding and modelling of collision processes
 - video-based trajectory data collection, naturalistic driving studies (SHRP2)
 - need for data mining and visualization techniques for safety analysis
- Validation of proactive methods for road safety analysis
- Open Science: data sharing and open source code
 - http://nicolas.saunier.confins.net, Traffic Intelligence
 - public traffic video dataset for benchmarks and TRB 2014 workshop [Saunier et al., 2014]

- Acknowledge the support of NSERC, FRQNT and Ministry of Transportation of Québec
- Some collaborators
 - Tarek Sayed (University of British Columbia)
 - Karim Ismail (Carleton University)
 - Luis Miranda-Moreno (McGill University)
 - Nadia Mourji, Bruno Agard, Mohamed Gomaa Mohamed, Paul St-Aubin (Polytechnique Montréal)

Questions?

- Amundsen, F. and Hydén, C., editors (1977).

 Proceedings of the first workshop on traffic conflicts, Oslo,
 Norway. Institute of Transport Economics.
- Gettman, D. and Head, L. (2003). Surrogate safety measures from traffic simulation models, final report. Technical Report FHWA-RD-03-050, Federal Highway
- Hauer, E., Ng, J., and Lovell, J. (1988).
 Estimation of safety at signalized intersections.

 Transportation Research Record: Journal of the

Transportation Research Board, 1185:48–61.

Administration.

- Ismail, K. (2010).
 Application of computer vision techniques for automated road safety analysis and traffic data collection.
 PhD thesis, University of British Columbia.
 - Ismail, K., Sayed, T., and Saunier, N. (2010).
 - Automated analysis of pedestrian-vehicle conflicts: Context