Automated Methods for Surrogate Safety Analysis Webinar for the District Department of Transportation

Nicolas Saunier nicolas.saunier@polymtl.ca

POLYTECHNIQUE MONTRÉAL WORLD-CLASS

ENGINEERING

August 25th 2014

Outline

N. Saunier, Polytechnique Montréal

・ロト ・四ト ・ヨト ・ヨト

2

2/49

August 25th 2014

Outline

- 2 Approach
- 3 Case Studies

N. Saunier, Polytechnique Montréal

2

・ロト ・四ト ・ヨト ・ヨト

Methods for Road Safety Analysis

There are two main categories of methods, whether they are based on direct observation or not

- Accidents are reconstituted
 - traditional road safety analysis relying on historical collision data
 - vehicular accident reconstruction

(B)

Methods for Road Safety Analysis

There are two main categories of methods, whether they are based on direct observation or not

- Accidents are reconstituted
 - traditional road safety analysis relying on historical collision data
 - vehicular accident reconstruction
- Poad user behavior and accidents are directly observed
 - naturalistic driving studies
 - surrogate safety analysis

Need for Proactive (Surrogate) Methods for Road Safety Analysis

Because of the shortcomings of the traditional approaches, there is a need for methods that do not require to wait for accidents to happen

Traffic Conflicts

A traffic conflict is "an observational situation in which two or more road users approach each other in space and time to such an extent that a collision is imminent if their movements remain unchanged" [Amundsen and Hydén, 1977]

The Safety/Severity Hierarchy

э

Image: A matrix and a matrix

Surrogate Measures of Safety

Continuous measures

- Time-to-collision (TTC)
- Gap time (GT) (=predicted PET)
- Deceleration to safety time (DST)
- Speed, etc.
- Unique measures per conflict
 - Post-encroachment time (PET)
 - Evasive action(s) (harshness), subjective judgment, etc.

August 25th 2014

8/49

• Number of traffic events, e.g. (serious) traffic conflicts

Surrogate Measures of Safety

Continuous measures

- Time-to-collision (TTC)
- Gap time (GT) (=predicted PET)
- Deceleration to safety time (DST)
- Speed, etc.
- Unique measures per conflict
 - Post-encroachment time (PET)
 - Evasive action(s) (harshness), subjective judgment, etc.

August 25^{th} 2014

8/49

• Number of traffic events, e.g. (serious) traffic conflicts

Which indicators related to collision probability and/or severity?

Time-to-Collision

$$TTC = \frac{d_2}{v_2} \text{ if } \frac{d_1}{v_1} < \frac{d_2}{v_2} < \frac{d_1 + l_1 + w_2}{v_1}$$
$$TTC = \frac{d_1}{v_1} \text{ if } \frac{d_2}{v_2} < \frac{d_1}{v_1} < \frac{d_2 + l_2 + w_1}{v_2} \text{ (side)}$$
$$TTC = \frac{X_1 - X_2 - l_1}{v_1 - v_2} \text{ if } v_2 > v_1 \text{ (rear end)}$$
$$TTC = \frac{X_1 - X_2}{v_1 + v_2} \text{ (head on)}$$

N. Saunier, Polytechnique Montréal

August 25th 2014 9 / 49

포 🛌 포

Post-Encroachment Time (PET) and Predicted PET

- PET is the time difference between the moment an offending road user leaves an area of potential collision and the moment of arrival of a conflicted road user possessing the right of way
- pPET is calculated at each instant by extrapolating the movements of the interacting road users in space and time

A D b 4 A b

Issues with Traffic Conflict Techniques

- Several traffic conflict techniques exist ("old" and "new") but there is a lack of comparison and validation
- Issues related to the (mostly) manual data collection process
 - cost
 - reliability and subjectivity: intra- and inter-observer variability

< ■ > < ■ > August 25th 2014

11/49

Mixed validation results

Objectives

- Develop an automated and robust probabilistic framework for surrogate safety analysis
- Better understand collision processes and the similarities between interactions with and without a collision

< ■ > < ■ > August 25th 2014

12/49

- Validate the surrogate measures of safety
- Apply the method to several case studies: urban intersections, vulnerable road users, highways, roundabouts

Outline

N. Saunier, Polytechnique Montréal

2

・ロト ・四ト ・ヨト ・ヨト

Rethinking the Collision Course

- A traffic conflict is "an observational situation in which two or more road users approach each other in space and time to such an extent that a collision is imminent if their movements remain unchanged"
- For two interacting road users, many chains of events may lead to a collision
- It is possible to estimate the probability of collision if one can predict the road users' future positions
 - the motion prediction method must be specified

A B A A B A

- Predict trajectories according to various hypotheses
 - iterate the positions based on the driver input (acceleration and steering)
 - learn the road users' motion patterns (including frequencies), represented by actual trajectories called prototypes, then match observed trajectories to prototypes and resample

August 25th 2014

15/49

 Advantage: generic method to detect a collision course and measure safety indicators, as opposed to several cases and formulas (e.g. in [Gettman and Head, 2003])

[Saunier et al., 2007, Saunier and Sayed, 2008, Mohamed and Saunier, 2013, St-Aubin et al., 2014]

A Simple Example

Collision Points and Crossing Zones

Using of a finite set of predicted trajectories, enumerate the collision points CP_n and the crossing zones CZ_m . Safety indicators can then be computed:

$$P(Collision(U_i, U_j)) = \sum_{n} P(Collision(CP_n))$$
$$TTC(U_i, U_j, t_0) = \frac{\sum_{n} P(Collision(CP_n)) t_n}{P(Collision(U_i, U_j))}$$
$$pPET(U_i, U_j, t_0) = \frac{\sum_{m} P(Reaching(CZ_m)) |t_{i,m} - t_{j,m}|}{\sum_{m} P(Reaching(CZ_m))}$$

< ■ > < ■ > ■ August 25th 2014

17/49

[Saunier et al., 2010, Mohamed and Saunier, 2013, Saunier and Mohamed, 2014]

Automated Video Analysis

Feature-based Road User Tracking in Video Data

Good enough for safety analysis and other applications in busy urban road locations, including the study of pedestrians and pedestrian-vehicle interactions [Saunier and Sayed, 2006]

August 25th 2014

19/49

Flexible Mobile Video Data Collection Unit

August 25th 2014

20/49

[Jackson et al., 2013]

N. Saunier, Polytechnique Montréal

Approach

Road User Classification [Saunier et al., 2011]

Approach

Road User Classification [Zangenehpour et al., 2014]

(a) Snapshot of video frame

(c) Cyclist trajectory heat-map

(d) Pedestrian trajectory heat-map

August 25th 2014

21/49

N. Saunier, Polytechnique Montréal

Outline

4 Conclusion

N. Saunier, Polytechnique Montréal

2

・ロト ・四ト ・ヨト ・ヨト

Case Studies

Validating Cyclist Counts in Mixed Traffic

(a)

(b)

Case Studies

Validating Cyclist Counts in Mixed Traffic

N. Saunier, Polytechnique Montréal

< 2 > < 2</td>

Validating Cyclist Counts in Mixed Traffic

Environment Type	Counting Interval (minutes)	Average Flow	Linear Coefficient, a*	Linear Constant, b*	${ m Linear} { m R}^2$	RMSD	MAPD	SDPD
Road segments with cycle track	5	11.3	0.96	0.09	0.97	1.59	10 %	5~%
	15	33.8	0.97	0.08	0.99	3.10	7 %	1 %
Intersections with cycle track	5	15.0	0.81	1.01	0.94	3.92	17 %	6%
	15	44.3	0.83	2.56	0.97	9.33	12 %	3 %
Road segments without cycle track	5	12.3	0.93	0.73	0.95	2.40	$13 \ \%$	7 %
	15	40.8	0.93	2.21	0.98	4.77	11 %	6 %
Intersections	5	3.1	0.80	0.33	0.55	1.47	37~%	32~%
track	15	9.4	0.78	1.44	0.68	2.32	19 %	6%

* in "Manual Count = a * Automated Count + b"

э

Disaggregated Vehicle Speed Validation

August 25th 2014

24/49

Road User Classification in Dense Mixed Traffic

э

Road User Tracking (Kentucky Dataset)

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Safety Indicators

N. Saunier, Polytechnique Montréal

Distribution of Indicators (Event Aggregation)

Maximum Collision Probability

Minimum TTC

Spatial Distribution of the Collision Points

N. Saunier, Polytechnique Montréal

August 25th 2014 32 / 49

Spatial Distribution of the Collision Points

N. Saunier, Polytechnique Montréal

August 25th 2014 33 / 49

Before and After Study: Introduction of a Scramble Phase

Data collected in Oakland, CA [Ismail et al., 2010]

N. Saunier, Polytechnique Montréal

August 25th 2014 34 / 49

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Distribution of Safety Indicators

크

Case Studies

Before and After Distribution of the Collision Points

N. Saunier, Polytechnique Montréal

-

Lane-Change Bans at Urban Highway Ramps

Ramp: A20-E-E56-3 Region(s): UPreMZ, PPreMZ Analysis length: 50 m Treatment: Yes Type A | Conflicts LUCENT TTC (6)

Treated site (with lane marking) [St-Aubin et al., 2012, St-Aubin et al., 2013a]

August 25th 2014

37/49

Figure 37 - Conflict analysis Cam20-16-Dorval (Treated).

Lane-Change Bans at Urban Highway Ramps

Figure 27 - Conflict analysis Cam20-16-Dorval (Untreated).

Untreated site (no lane marking) [St-Aubin et al., 2012, St-Aubin et al., 2013a]

August 25th 2014

37/49

Dangerous Pedestrian Crossings and Violations at Signalized Intersections

Spatial density of pedestrians crossings at Amherst/Sherbrooke

August 25th 2014

38/49

[Brosseau et al., 2013]

N. Saunier, Polytechnique Montréal

Dangerous Pedestrian Crossings and Violations at Signalized Intersections

Spatial density of pedestrians crossings at Iberville/Sherbrooke

August 25th 2014

38/49

[Brosseau et al., 2013]

N. Saunier, Polytechnique Montréal

Big Data: Roundabout Safety in Québec

N. Saunier, Polytechnique Montréal

August 25th 2014 39 / 49

Speed Fields in Roundabouts

August 25th 2014

40/49

[St-Aubin et al., 2013b]

N. Saunier, Polytechnique Montréal

K-means cluster profile for TTC regression

#	Description	Nzones	Nobs
1	Small single and double lane residential	11	4,200
	collectors		
2	Single-lane regional highways and arteri-	16	26,243
	als with speed limits of 70-90 km/h and		
	mostly polarised flow ratios		
3	2-lane arterials with very high flow ratios	5	13,307
4	Hybrid lane $1 - >2 2 - >1$ arterials with	3	4,809
	very low flow ratios		
5	Traffic circle converted to roundabout	4	10,295
	(2 lanes, extremely large diameters,		
	tangential approach angle)		
6	Single-lane regional highway with large-	2	2,235
	angle quadrants (140 degrees) and mixed		
	flow ratios		
	${}^{\bullet} \Box {}^{\flat}$	(4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	<

August 25th 2014

41/49

TTC Distribution Comparison by Cluster

Cycle Track Safety (TRB 2015)

Cycle Track Safety (TRB 2015)

Model I. Cycle track on the right vs. no cycle track									
Number of Observat	Log likelih	ood = -1420	Pseudo R ² = 0.264						
	Coef.	Std. Err.	z	P > z	[95% Con	f. Interval]			
Cycle Track on Right	0.4303	0.1297	3.32	0.001	0.1760	0.6846			
Turning-Vehicle Flow for 15s before to 15s after	-1.4089	0.0551	-25.56	0.000	-1.5170	-1.3009			
Number of Lane on the Main Road	-0.2354	0.0654	-3.60	0.000	-0.3636	-0.1073			
Bus Stop	0.2658	0.1336	1.99	0.047	0.0039	0.5277			
Cut-off 1	-6.6884	0.2836			-7.2443	-6.1326			
Cut-off 2	-3.8927	0.1968			-4.2785	-3.5070			
Cut-off 3	-2.5246	0.1812			-2.8798	-2.1695			
Model II. Cycle track on the left vs. no cycle track									
Number of Observations = 4803			Log likelih	ood = -3241	Pseudo R ² = 0.288				
	Coef.	Std. Err.	z	P > z	[95% Con	f. Interval]			
Cycle Track on Left	-0.1618	0.1186	-1.36	0.172	-0.3941	0.0706			
Bicycle Flow for 10s before	0.0827	0.0302	2.74	0.006	0.0235	0.1419			
Turning-Vehicle Flow for	1 2020	0.0342	-40.79	0.000	-1.4608	-1.3268			
15s before to 15s after	-1.3938								
Cut-off 1	-7.4890	0.2074			-7.8956	-7.0825			
Cut-off 2	-3.5944	0.1243			-3.8380	-3.3509			
Cut-off 3	-2.0168	0.1132			-2.2387	-1.7950			
Model III. Cycle track on the right vs. cycle track on the left									
Number of Observations = 6567 Log likelihood = -4030 Pseudo R ² = 0.291						$t^2 = 0.291$			
	Coef.	Std. Err.	Z	P > z	[95% Con	f. Interval]			
Cycle Track on Left	-0.5351	0.0921	-5.81	0.000	-0.7155	-0.3546			
Bicycle Flow for 10s before	0.6000	0.0268	2.23	0.025	0.0074	0.1126			
Turning-Vehicle Flow for 15s before to 15s after	-1.3544	0.0304	-44.52	0.000	-1.4141	-1.2948			
Number of Lane on the Main Road	-0.1592	0.0660	-2.41	0.016	-0.2884	-0.0299			
Number of Lane on the Turning Road	0.3855	0.1144	3.37	0.001	0.1613	0.6097			
Cut-off 1	-7.7501	0.3077			-8.3532	-7.1471			
Cut-off 2	-3.7916	0.2684			-4.3177	-3.2655			
Cut-off 3	-2.2953	0.2650			-2.8148 >	-1.7758 >			

N. Saunier, Polytechnique Montréal

2

4 ≥ + < ≥ +</p>

Outline

N. Saunier, Polytechnique Montréal

2

・ロト ・四ト ・ヨト ・ヨト

Conclusion

 Surrogate methods for safety analysis are complementary methods to understand collision factors and better diagnose safety

★ ∃ > < ∃ >

Conclusion

- Surrogate methods for safety analysis are complementary methods to understand collision factors and better diagnose safety
- The challenge is to propose a simple and generic framework for surrogate safety analysis

• Improve computer vision for all road users in busy urban locations

August 25th 2014

2

46/49

- Improve computer vision for all road users in busy urban locations
- Validation of surrogate methods for road safety analysis

- Improve computer vision for all road users in busy urban locations
- Validation of surrogate methods for road safety analysis
 - 20 roundabout sites with video observations and accident records

EN 4 EN

- Improve computer vision for all road users in busy urban locations
- Validation of surrogate methods for road safety analysis
 - 20 roundabout sites with video observations and accident records

< ■ > < ■ > August 25th 2014

46/49

Understanding and modelling of collision processes: collect more data

- Improve computer vision for all road users in busy urban locations
- Validation of surrogate methods for road safety analysis
 - 20 roundabout sites with video observations and accident records
- Understanding and modelling of collision processes: collect more data
- Pedestrian modelling: automated tracking parameter optimization (Bilal Farooq)

< ■ > < ■ > August 25th 2014

46/49

Researchers Need to Share More

- Principle of independent reproducibility
- Need to share data and tools used to produce the results
 - public datasets and benchmarks [Saunier et al., 2014]
 - public / open source software: adoption and contributions by researchers and practitioners
- Traffic Intelligence open source project https: //bitbucket.org/Nicolas/trafficintelligence

B > 4 B >

Questions

- What is a key difference between traditional safety analysis methods and the new proactive methods?
- What are some of the benefits of video analysis for safety?
- Otte a motion prediction method used to compute time to collision.
- Oite some of the differences of post-encroachment time with time to collision.

< ■ > < ■ > August 25th 2014

48/49

Solution Can surrogate methods of safety be applied to vulnerable road users?

- Collaboration with Tarek Sayed (UBC), Karim Ismail (Carleton), Marilyne Brosseau, Mohamed Gomaa Mohamed, Paul St-Aubin (Polytechnique Montréal), Luis Miranda-Moreno, Sohail Zangenehpour (McGill), Aliaksei Laureshyn (Lund)
- Funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Québec Research Fund for Nature and Technology (FRQNT) and the Québec Ministry of Transportation (MTQ)

Questions?

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

August 25th 2014

49/49

Amundsen, F. and Hydén, C., editors (1977).

Proceedings of the first workshop on traffic conflicts, Oslo, Norway. Institute of Transport Economics.

Brosseau, M., Zangenehpour, S., Saunier, N., and Miranda-Moreno, L. (2013).

The impact of waiting time and other factors on dangerous pedestrian crossings and violations at signalized intersections: a case study in montreal.

Transportation Research Part F: Traffic Psychology and Behaviour, 21:159–172.

```
    Gettman, D. and Head, L. (2003).
Surrogate safety measures from traffic simulation models, final
report.
Technical Report FHWA-RD-03-050, Federal Highway
Administration.
```

Ismail, K., Sayed, T., and Saunier, N. (2010).

Conclusion

Automated analysis of pedestrian-vehicle conflicts: Context for before-and-after studies.

Transportation Research Record: Journal of the Transportation Research Board, 2198:52–64.

presented at the 2010 Transportation Research Board Annual Meeting.

Jackson, S., Miranda-Moreno, L., St-Aubin, P., and Saunier, N. (2013).

A flexible, mobile video camera system and open source video analysis software for road safety and behavioural analysis.

Transportation Research Record: Journal of the Transportation Research Board, 2365:90–98.

presented at the 2013 Transportation Research Board Annual Meeting.

<ロ ト < 合 ト < 三 ト < 三 ト 三 August 25th 2014

49/49

Mohamed, M. G. and Saunier, N. (2013). Motion prediction methods for surrogate safety analysis. In Transportation Research Board Annual Meeting Compendium of Papers.

13-4647. Accepted for publication in Transportation Research Record: Journal of the Transportation Research Board.

- Saunier, N., Ardo, H., Jodoin, J.-P., Laureshyn, A., Nilsson, M., Svensson, A., Miranda-Moreno, L. F., Bilodeau, G.-A., and Astrom, K. (2014).
 Public video data set for road transportation applications.
 In *Transportation Research Board Annual Meeting Compendium of Papers*.
 14, 2270
 - 14-2379.
- Saunier, N., El Husseini, A., Ismail, K., Morency, C., Auberlet, J.-M., and Sayed, T. (2011).

Pedestrian stride frequency and length estimation in outdoor urban environments using video sensors.

August 25th 2014

49/49

Transportation Research Record: Journal of the Transportation Research Board, 2264:138–147. presented at the 2011 Transportation Research Board Annual Meeting.

Saunier, N. and Mohamed, M. G. (2014).

Clustering surrogate safety indicators to understand collision processes.

In Transportation Research Board Annual Meeting Compendium of Papers. 14-2380.

Saunier, N. and Sayed, T. (2006).

A feature-based tracking algorithm for vehicles in intersections.

In Canadian Conference on Computer and Robot Vision, Québec. IEEE.

Saunier, N. and Sayed, T. (2008).

A Probabilistic Framework for Automated Analysis of Exposure to Road Collisions.

Transportation Research Record: Journal of the Transportation Research Board, 2083:96–104.

presented at the 2008 Transportation Research Board Annual Meeting.

Saunier, N., Sayed, T., and Ismail, K. (2010).

Large scale automated analysis of vehicle interactions and collisions.

Transportation Research Record: Journal of the Transportation Research Board, 2147:42–50.

presented at the 2010 Transportation Research Board Annual Meeting.

 Saunier, N., Sayed, T., and Lim, C. (2007).
 Probabilistic Collision Prediction for Vision-Based Automated Road Safety Analysis.
 In *The 10th International IEEE Conference on Intelligent*

Transportation Systems, pages 872-878, Seattle. IEEE.

St-Aubin, P., Miranda-Moreno, L., and Saunier, N. (2012).

3

A surrogate safety analysis at protected freeway ramps using cross-sectional and before-after video data.

In *Transportation Research Board Annual Meeting Compendium of Papers*. 12-2955.

St-Aubin, P., Miranda-Moreno, L., and Saunier, N. (2013a). An automated surrogate safety analysis at protected highway ramps using cross-sectional and before-after video data. *Transportation Research Part C: Emerging Technologies*, 36:284–295.

St-Aubin, P., Saunier, N., Miranda-Moreno, L., and Ismail, K. (2013b).

Detailed driver behaviour analysis and trajectory interpretation at roundabouts using computer vision data.

In Transportation Research Board Annual Meeting Compendium of Papers.

13-5255.

St-Aubin, P., Saunier, N., and Miranda-Moreno, L. F. (2014). Road user collision prediction using motion patterns applied to surrogate safety analysis.

In *Transportation Research Board Annual Meeting Compendium of Papers.* 14-5363.

- Svensson, A. (1998).

A Method for Analyzing the Traffic Process in a Safety Perspective.

PhD thesis, University of Lund. Bulletin 166.

Svensson, A. and Hydén, C. (2006). Estimating the severity of safety related behaviour. Accident Analysis & Prevention, 38(2):379–385.

Zangenehpour, S., Miranda-Moreno, L. F., and Saunier, N. (2014).

Conclusion

Automated classification in traffic video at intersections with heavy pedestrian and bicycle traffic.

In Transportation Research Board Annual Meeting Compendium of Papers. 14-4337.

(B)