
   

 

AUTOMATED COLLECTION OF PEDESTRIAN DATA USING COMPUTER VISION 

TECHNIQUES  

 

 

Karim Ismail, M.A.Sc. 

Research Assistant, Department of Civil Engineering 

University of British Columbia 

karim@civil.ubc.ca 

 

Tarek Sayed, PhD, P.Eng. 

Distinguished University Scholar 

Professor of Civil Engineering 

University of British Columbia 

tsayed@civil.ubc.ca 

 

Nicolas Saunier, PhD  

Research Associate, Department of Civil Engineering 

University of British Columbia 

saunier@civil.ubc.ca 

 

 

Word Count = 7020 words  

[5020 words + 2 Tables + 6 figures, 1020 references]  

mailto:tsayed@civil.ubc.ca
mailto:saunier@civil.ubc.ca


Ismail, Sayed, and Saunier  1 

 

 

AUTOMATED COLLECTION OF PEDESTRIAN DATA USING COMPUTER VISION 

TECHNIQUES  

ABSTRACT 

Pedestrian data collection is critical for the planning and design of pedestrian facilities. Most 

pedestrian data collection efforts involve field observations or observer-based video analysis. 

These manual observations are time consuming, limited in coverage, resource intensive and error 

prone. Automated video analysis which involves the use of computer vision techniques can 

overcome many of these shortcomings. Despite advances in the field of computer vision 

applications for pedestrian detection and tracking, the technical literature shows little use of these 

techniques in pedestrian data collection practices. The likely reasons are the technical 

complexities that surround the processing of pedestrian videos. To extract pedestrian trajectories 

automatically from video, all road users must be detected, tracked at each frame and classified by 

type, at least as pedestrians and non-pedestrians. This is a challenging task in busy open outdoor 

urban environment. Common problems include global illumination variations, multiple object 

tracking and shadow handling. Specific problems arise when dealing with pedestrians because of 

their complex movement dynamics, varied appearance and non-rigid nature. The main objective 

of this study is to present a system for automated collection of pedestrian walking speed using 

computer vision techniques. The system is based on a previously developed feature-based 

tracking system for vehicles which was significantly modified to adapt to the particularities of 

pedestrian movement and to discriminate pedestrian and motorized traffic. The system was 

tested on real video data collected at Downtown area of Vancouver, British Columbia. This study 

is unique in so far as it tests the system under a variety of daylight conditions, crowd densities, 

movement context, and the video analysis approach. Promising results were obtained and several 

conclusions were drawn using statistical analysis of the automatically extracted pedestrian 

trajectories.  
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INTRODUCTION 

Walking is the most basic means of traveling and is a main driver for a sustainable, healthy, 

clean, resource-efficient and livable urban environment. Therefore, new urban planning concepts 

have been redefining the function and mode-assignment of streets by emphasizing walkability as 

well as changing industry standards and professional practice in order to accommodate the 

pedestrian as a key road user (1). The emergence of the pedestrian as a key road user in an urban 

environment is an element in a larger theme that concerns the creation of a more sustainable 

transportation system. The revival of the theme is likely a public response to global changes in 

energy resources as well as a desire for improving the quality of life in urban areas.  

Despite findings in the literature that corroborate the importance of non-motorized traffic 

and in particular pedestrians, these modes of transportation are in general overlooked, and 

understudied relative to vehicular traffic. For example, current trip counts capture 16-33% of 

actual non-motorized trips (2), while collecting reliable non-motorized traffic information 

remains challenging (3). Planning for pedestrian facilities and modeling of pedestrian demand 

are areas of research that are yet to be developed to a level that matches vehicular traffic (4).  

Real data is critical for the development and calibration of design and planning models 

for pedestrian facilities. Many design applications involve individual (microscopic) observations 

of pedestrian movement. For example, microscopic observational data is required to investigate 

the ability of individual pedestrians to vary their walking speed based on a signal indication, 

potential conflict with motorized traffic (5) or in response to external stimuli (6). In addition, 

microscopic pedestrian observations can provide valuable insight for pedestrian modeling, e.g. 

inter-person spacing and pedestrian maneuvering (7) and obstacle navigation (8). Although at a 

relatively advanced stage in theory and analysis, pedestrian simulation models are generally 

based on limited understanding of microscopic pedestrian behavior (8) and limited validity that 

stems from real data (7) (9).  

Collecting observational data for pedestrians is particularly challenging due to the less 

organized nature of pedestrian traffic compared to vehicular traffic (10). The main methods are: 

manual field observations, manual observations from videos, semi-automated video analysis, and 

automated video analysis. Manual field observation, which is the common method of pedestrian 

data collection, is in general more expensive, error-prone, and time consuming compared to 

video analysis (11). Generally, the use of video sensors has several advantages. First, it captures 

naturalistic pedestrian movement with limited risk of stirring the attention of observed subjects, 

who may behave unnaturally if felt being watched (12). Other advantages include the relative 

ease of installation, the richness of the data that can be extracted (i.e. complete trajectories), the 

large area that can be covered and their low cost. However, manual video observations are time 

consuming, resource intensive, and error-prone. Semi-automated analysis, or time-lapse analysis, 

of pedestrian movement involve the use of image processing tools to manually mark or track 

pedestrians in a sequence of video images, e.g. (13) (14). Manual operations in semi-automated 

video analysis are laborious and limited in terms of data volume that can be analyzed compared 

to automated methods. Automated video analysis which involves the use of computer vision 

techniques can overcome many of the shortcomings associated with manual field observations 

and manual video analysis. 
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The transportation literature contains few studies that involved applying computer vision 

techniques to collect pedestrian data in real settings, especially in busy “open” outdoor urban 

environment, such as areas around an intersection and transit hubs. Open environment refers to 

the mixed traffic, including motorized vehicles and pedestrians, the variable environment, the 

multiple flows of moving objects that may enter and leave the scene, and stop for varying 

amounts of time in the field of view. Automated pedestrian data collection in such environments 

remains a largely unsolved problem in the field of computer vision. Most published work is 

limited to idealized conditions using small datasets. 

The primary objective of this study is to document the development and testing of a prototype 

system that is capable of extracting real-world pedestrian tracks from a video taken at traffic 

intersections. The study is unique in regard to the developed video analysis technique as well as 

in testing the developed system under different conditions of lighting, crowdedness, and traffic 

mix in an open and uncontrolled environment. The paper discusses the technical issues that arose 

during the system development are described along with techniques for resolving these 

difficulties. The walking speed automatically calculated by the system was validated in 

comparison to walking speeds extracted by human observers. The system accuracy in 

automatically measuring pedestrian speed was satisfactory and provided support and reliability 

for analysis results. A case study is introduced using video data collected for pedestrian 

movement in a main commercial corridor in the Downtown area of Vancouver, British 

Columbia. The case study was validated and demonstrated satisfactory accuracy of the system. 

The paper includes a statistical analysis of the case study results and reports the findings. 

The next section reports a review of previous work on the subjects of pedestrian walking 

speed and pedestrian detection and tracking, followed by a description of the developed system 

for automatically collecting pedestrian walking speed data from video sequences. Following 

sections report the data collection effort, system testing, and validation results. The paper 

concludes with statistical analysis of the walking speed data obtained from the testing datasets 

and a summary of conclusions drawn from the entire study.  

PREVIOUS WORK 

Pedestrians Walking Speed 

Walking speed is a fundamental characteristic of pedestrian flow that supports a wide range of 

theories and applications. The application contexts in transportation engineering that require an 

assumption regarding walking speed include planning and management of crowd movement, 

developing pedestrian simulation models, and designing pedestrian and traffic signals. The 

ability to predict pedestrian movement under different external circumstances and individual 

attributes of pedestrians is an important underpinning for the process of planning and design of 

pedestrian facilities (15). There are several contextual and individual variables that influence 

walking speed. Examples of studies that involved substantial walking speed observations are 

presented in Table 1. The Table also lists the variables that were considered to impact walking 

speed. For a good review of the evolution of walking speed refer to research cited in (16) (17). 

As shown in Table 1, none of the key studies in the literature made use of automated pedestrian 

speed collection. Current methods used in practice to collect pedestrian data are also unable to 

capture microscopic changes in speed and position (18). This highlights the shortcomings of the 
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current techniques used for pedestrian data collection and signifies the practical need for this 

research work. 

Automated Pedestrian Data Collection 

Automated pedestrian data collection relies mostly on video sensors, including visible spectrum, 

infrared (11) and thermal imaging cameras, as well as sometimes on Light Detection and 

Ranging (LIDAR) sensors (19). The work presented in this paper uses video cameras (in the 

visible spectrum) as alternative sensors are still more expensive, less widely available, and their 

resolution in space and time is typically more limited (11).  

To extract pedestrian data automatically from video, all road users must be detected, 

tracked from one frame to the next and classified by type, at least as pedestrians and non-

pedestrians. This is a challenging task in busy open outdoor urban environment as described 

earlier. Common problems for all environments are global illumination variations, multiple 

object tracking and shadow handling. Specific problems arise when dealing with pedestrians 

because of their complex movement dynamics, varied appearance and non-rigid nature. For a 

good survey of the challenges, the readers are referred to (20), although it is geared towards the 

study of human motion at a finer scale than this study requires. In (20), the different techniques 

for the detection and tracking of pedestrians are classified into: 

 Tracking by detection: detection of objects is done using background modeling and 

subtraction with the current image (9) (11) (21) (22), or deformable templates, i.e. a 

model of image appearance using color distribution, edge characteristics, and texture. 

Image classifiers can be trained on labeled data to detect pedestrians (23). In many cases, 

especially if the objects are well separated, this approach works well. 

 Tracking using flow: selecting good interest points, features, and matching them between 

successive images provides feature tracks that can be clustered into object trajectories. 

This approach is also called feature-based tracking and has been applied to traffic 

monitoring in (24) (25), and pedestrian counting in (26). 

 Tracking with probability: it is convenient to see tracking as a probabilistic inference 

problem in a Bayesian tracking framework. In simple cases, independent Kalman filters 

can be run successfully for each target (Extended Kalman Filters are used for individuals 

and groups of pedestrians in (27), but will fail in scenes where the objects interact and 

occlude each other. This is called the data association problem and can be addressed 

using particle filters and Markov chain Monte Carlo methods for sampling. 

Although great progress has been made in recent years, tracking performance are difficult to 

report and compare, especially when the systems are not publicly available, and when 

benchmarks are rare and not systematically used. Tracking pedestrian and mixed traffic in 

crowded scenes is still an open problem. Most vision-based pedestrian data collection took place 

in idealized conditions, e.g. heads and feet present all the time (10), low pedestrian volume (21) 

(22), or heavily controlled indoor experiments including markers on pedestrians (10) (11). The 

collected datasets are typically small and in some cases, require significant manual input to 

correct the automated results and to supplement with additional data (22).  
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PROTOTYPE SYSTEM DEVELOPMENT 

The main stages of development are: 

1. Define the system structure, function of each component, and the inter-component data 

exchange.  

2. Implement and document each system component. 

3. Find a set of detection and tracking parameters.  

Figure 1 shows the structure of the prototype system. The following is a brief description and 

algorithm documentation of system components:  

Camera Calibration  

The main objective of camera calibration is to find a set of parameters that constitute a mapping 

from world coordinates to image plane coordinates, so that world coordinates can in turn be 

recovered from detection in images. The extrinsic parameters specify the translation and rotation 

of the camera coordinates relative to the world coordinates. The intrinsic parameters describe the 

perspective projection of the road scene onto the image plane. Both sets of parameters can be 

obtained by minimizing the difference between the projection of geometric entities, e.g. points 

and lines, onto world or image plane spaces and the actual measurements of these entities in 

projection space. A more efficient approach is to make use of the regularities (e.g. parallel lane 

markings, signal poles) abundant in traffic scenes to perform more informed calibration (28). 

The presence of these geometric primitives provides additional constraints as to the comparison 

between actual and projected entities. The mapping from homogeneous world coordinates P to 

homogeneous image plane coordinates p is as follows: 

Pt|RAp  ][       (1) 

where A, R and t are the intrinsic projection, rotation and translation matrices respectively. The 

intrinsic parameters considered in this study are focal lengths and skew angle. The mapping in 

Equation (1) imposes a reduction in dimensionality due to projecting on a plane. The inverse 

projection is defined only if one of the world coordinates, or a relationship thereof, is known. In 

the current application, image plane coordinates are re-projected onto the road surface, i.e. the 

plane Z=0. The world coordinates were obtained from an orthographic satellite image of the 

traffic scene obtained from Google Maps (29). The following generic objective function makes 

use of low-level features and geometric primitives: 
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where 

 c is the vector of all camera parameters, 

 41w
 are weight factors,  

 ip  and 
c

ip  are the projected and measured image plane coordinates of calibration points 

respectively, 

 iP and
c

iP are the re-projected and actual world coordinates of calibration points 

respectively,  
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 jD and c

jD are projected and measured distances respectively,  

 kN and 
c

kN are the calculated and actual angles respectively between pairs of calibration 

lines.  

The weight factors are used to form an aggregate objective function. Based on trial and 

error, values used in this study are ]12.08.0[41 ssw  , where s is the approximate number 

of pixels/meter in the image plane.
 
Note that Equation 2 describes a generic non-coplanar 

calibration since world coordinates are in 3D. Also, angles between pairs of lines can capture 

conditions in which lines are parallel and perpendicular. The selection of the calibration entities 

should be well distributed over the camera field of view and of balanced densities. Local 

concentration of the calibration entities can possibly lead to the convergence to suboptimal set of 

parameters and degraded projection quality in areas in the field of view that are not covered with 

calibration entities.  

The objective of camera calibration is to find the set of camera parameters c that 

minimizes the objective function )F(c described in Equation 2. Due to its good convergence rate 

compared to other algorithm available in the Matlab Optimization Toolbox, the optimization 

algorithm used was based on the Nelder-Mead simplex method. Standard methods in the 

literature for finding initial estimates depend on the extension of parallel lines in the image 

scene, e.g. lane marking, to find their vanishing point (30) (31) (28). In this study, the monitored 

traffic scenes were too limited in their field of view to observe a reasonable convergence of 

parallel lines toward a vanishing point. Initial estimates for the camera parameter, as was 

evidenced by numerous trials, are critical for an optimal solution to be found. An initial estimate 

for the camera position was obtained using an approximate position for the camera set-up 

location and the rotation angles using an orthographic satellite image. 
 

The calibration accuracy obtained by applying the previous procedure to a Vancouver 

intersection (as will be described later in the case study) was satisfactory. The average 

percentage error in linear measurements was 4%. Figure 2 shows the projection of a sample of 

pedestrian tracks on an orthographic satellite image of the scene. Similar studies in the literature 

used artificial construction of an orthographic image using video image rectification e.g. (32). 

The approach followed in this study by projecting the video data on an independent site map 

proved helpful in visually verifying the accuracy of projection - especially with the difficulties 

faced in obtaining calibration data. In addition, it was possible to collate pedestrian tracks 

obtained from different camera settings into a single site map, whereas video image rectification 

produces a setting-dependent site map. 

Video Formatting  

Depending on the video source, it may be necessary to encode the video in a suitable format for 

later processing, as well as correct recording artifacts such as interlacing.  

Feature Tracking and Feature Grouping 

A feature-based tracking system was initially developed for vehicle detection and 

tracking as part of a larger system for automated road safety analysis (25)(33). Feature-based 

tracking is preferred because it can handle partial occlusion. Tracking features is done through 

the well known Kanade-Lucas-Tomasi feature tracker. Stationary features and features with 

unrealistic motion are filtered out, and new features are generated to track objects entering the 

field of view. Since a moving object can have multiple features, the next step is to group the 
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features, i.e. deciding what set of features belongs to the same object, using cues like spatial 

proximity and common motion. The grouping method described in (34) was extended to handle 

intersections (25). A graph connecting features is constructed over time. Two parameters are 

crucial for the success of the method: the connection distance Dconnection, i.e. the maximum 

distance between two features for their connection, and the segmentation distance Dsegmentation, i.e. 

the maximum difference between the minimum and maximum distance between two features. 

The tracking accuracy for motor vehicles has been measured between 84.7% and 94.4% on three 

different sets of sequences (25). This means that most trajectories are detected by the system, 

although over-grouping and over-segmentation can still occur.  

High-level Object Processing 

Difficulties occur in scenes where the traffic is mixed and the road users have very different 

sizes, e.g. passenger cars and pedestrians, and the connection and segmentation distances can 

only be adjusted for one type of road user. To address this issue, the original system has been 

extended by obtaining the type of the road users. The parameters are set for pedestrians, and 

consequently the cars are over-segmented. Once the groups of features belonging to cars are 

identified, the feature are processed a second time by the grouping algorithm using larger 

connection and segmentation distances.  

In the current system, a simple test on the maximum speed reached of road users is 

sufficient to discriminate between pedestrians and motorized road users in most cases. This will 

be improved in the future by using object classifiers based on background subtraction and image 

appearance (23).  

System Operator and User 

The point of an automated system is to minimize user input, especially to eliminate the need for 

continuous supervising. Global optimization methods to adjust parameters are still lacking, as 

performance is difficult to evaluate completely automatically. The role of the system operator is 

therefore to find good parameter values by trial and error, and visual inspection of the results. 

Since the world coordinates are recovered, the parameters can be used unchanged in various 

scenes. The system was developed in an open manner in order to provide data for analysis and 

visualization purposes. The results are currently stored in plain text files, but could be as well 

stored in a database, and can be mined for the needs of the end user.  

CASE STUDY 

This section describes the analysis of video sequences collected from an open busy environment, 

in the Vancouver Downtown area. The objective of this analysis is to test the ability of the 

system to correctly measure the walking speed of pedestrians in a variety of settings. The 

validation study adopted the following  steps: 

 Select an intersection on a main commercial corridor in Vancouver, British Columbia 

with a nearby camera setting location. The intersection should contain a variety of 

pedestrian facilities. Also, the location should be on the main course of crowd movement 

outbound of a concurrent event in order to test the system. 

 Record high-definition video data for the intersection in day- and night-time conditions.  

 Select a random sample that represents 10% of the detected and tracked pedestrians 

(individuals or groups).  
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 Calculate the average walking speed by measuring the time the elapses during observing 

the crossing between two check lines, e.g. road marking.  

 Compare the system-based and observer-based walking speeds.  

 

Videos were collected for pedestrian movement at a traffic intersection on Robson St. which is a 

major commercial and business corridor in Vancouver Downtown area with active walking 

environment. A total of seven footages were recorded from 8:00 PM till 12:00 PM in order to 

capture normal night-time pedestrian movement as well as crowd movement to and from a 

fireworks event that took place in the same time. The timing of the video survey was intended to 

be concurrent with the fireworks event in order to capture higher pedestrian volumes and to 

provide walking speed information for local transportation authorities in order to assist in 

predicting outbound crowd movement in future events.  

The camera was set on the 29
th

 floor of a high-rise building that overlooks that 

intersection. Figure 2 shows a video image and an orthographic satellite image of the intersection 

along with real-world tracks of pedestrian movement as obtained using the video analysis 

system.  

The recorded video sequences covered a wide variety of observation conditions that often 

exist in pedestrian facilities. Various pedestrian density conditions were monitored, ranging from 

crosswalks with low pedestrian volumes to concentrated crowd movement. Videos were 

collected in day- and night-time conditions. Pedestrian movement was monitored at sidewalks, 

crosswalks, and along a thoroughfare that was closed for motorized traffic.  

Data Analysis 

The implementation of this camera calibration procedure faced two obstacles: first, the road 

surface in the monitored intersection was recently repainted, thus leaving a handful of common 

features on both the orthographic satellite image and the video images. Second, it was not 

possible to conduct a lab-based camera calibration in order to find all the intrinsic camera 

parameters apart from the focal length. The first obstacle was addressed by collecting linear field 

observations of the true length of a total of 15 entities that appeared in the video images. The 

calibration process was mainly guided by the linear component of the objective function. The 

second obstacle required that all camera parameters be estimated based on information collected 

from the traffic scene. This increased the processing time required for the convergence criterion 

to be met. Accurate camera parameters were required in this study since the magnitude of error 

in speed estimate that results from position estimate can be significant at low speeds. This 

obstacle was addressed by following the previous camera calibration procedure. 

Tracks shown in Figure 2(b) depict the movement of individual pedestrians as well as 

groups of pedestrians. Tracked objects, i.e. individuals and groups that reached a speed higher 

than a specific threshold, 3.5 m/s, were classified as motorized traffic and filtered out. Pedestrian 

tracks are clustered using the K-means algorithm. Each track is represented by a four-

dimensional vector, each element being the average movement orientation over a section of the 

track. The first and last sections cover 20% of the entire duration during which the pedestrian 

object existed, starting from both ends. The two intermediate sections were selected at one third 

of each pedestrian track with a length of 10% of the track duration. This selection of several 

clustering variables is necessary to capture turning pedestrian movement through the 

intersection. The number of clusters was selected based on visual observation of the prevalent 

streams of pedestrian movement in each video record. The four trajectory clusters that appear in 
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Figure 2(b) are: pedestrians moving East-West (1), pedestrians moving West-East (2), pedestrian 

crossing movement (3) and Vehicles (4). 

Night-time footage was the most challenging to analyze due to the poor visibility of 

pedestrians in dim corners of the intersection. A specific set of feature tracker parameters has to 

be used to recover more feature data. As shown in Figure 3, the results obtained are generally 

satisfactory. Data however could not be recovered from low-light areas. In addition, dark-clothed 

pedestrians were difficult to detect without rendering the integration of large volume of 

uninformative and low-quality features. 

Walking speed data was collected at user-defined registration areas for each tracked 

object that falls in a specific movement cluster. The definition of a registration area is necessary 

for gathering walking speed data in desirable specific spatial context. Since walking speed varies 

during the time a tracked object was present within the registration area, the average walking 

speed within this duration was recorded. Figure 4 shows the registration area defined for the 

indicated crosswalk. Registration areas were defined for other pedestrian facilities (two 

sidewalks, two unmarked crosswalks, and another marked crosswalk) in order to gather walking 

speed data. Summary of walking speed statistics are presented in Table 2. Figures 5(a) and 5(b) 

show sample distributions of pedestrian walking speed for crossing and sidewalk movements 

respectively.  

Validation 

Validation of object detection and tracking is generally poorly studied in the literature. There is 

an absence of a standard evaluation method that follows a systematic approach and is based on a 

public testing database. Hence, the validation process in this study is limited to walking speed 

measurements. Average walking speed for a 10% random sample drawn from tracked pedestrian 

objects was compared to manual video observation of the walking speed. Walking speed was 

manually calculated based on the time required by moving objects to traverse the shortest 

distance between two check lines. The check lines were selected to be the road markings of the 

crosswalk across Robson St. Figures 6 (a) and (b) show a comparison between measured and 

automatically calculated walking speeds. There is an excellent agreement between manual and 

automated walking speed values (RMSE = 0.0725 m/s and 0.0548 m/s). The residual errors can 

be attributed to inaccuracy of manual speed calculation in which the pedestrians are 

unrealistically assumed to follow the shortest path between two check lines, inaccuracy in 

camera calibration, and irregularities in pedestrian tracks due to noise in feature detection.  

Discussion of Results 

The case study was intended to monitor pedestrian movement under several conditions. The 

monitored pedestrian facilities are crosswalk, sidewalks, and unmarked crosswalks. Data was 

also collected for crowd movement during a road closure and is presented in Table 2. Pedestrians 

moving from West to East had to walk up a 5% longitudinal grade. The average walking speed 

for all pedestrian objects is 1.217 m/s and the average and 15
th

 percentile crossing speed is 1.315 

and 0.93 m/s respectively. This value is consistent with studies in the literature as shown in Table 

1. There is a statistically significant (p < 0.05) difference between walking speed at crosswalks 

and at sidewalks, walking uphill (from West to East) and opposite direction. There is no 

statistically significant (p = 0.0616) difference between walking speed along marked and 

unmarked crosswalks. However this result is deemed as inconclusive since it was measurably 
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close to statistical significance. There is a statistically significant difference between West-East 

walking speed at night during a road closure and at day time along the sidewalks. This is likely 

due to the larger space afforded for pedestrians during a road closure as well as the leisurely 

nature of walking back from a night event.  

As discussed before, one of the major advantages of video-based data collection is to 

capture walking speed variability. It was observed that pedestrians walked faster along unmarked 

crosswalks in case of approaching vehicles. The variability in crossing speed, quantified by the 

standard deviation of speed measurements over the time interval within a registration area, was 

recorded for movements along marked and unmarked crosswalks. There is a statistically 

significant (p < 0.0001) higher variability of walking speed at unmarked crosswalks compared to 

marked crosswalks.  

CONCLUSIONS 

Pedestrian walking speed has been the subject of continuous research. There has been a recent 

revival in pedestrian studies that is motivated in part by demographic changes. It is believed that 

future data collection is necessary to develop a better understanding of pedestrian movement and 

the factors that influence walking speed.  

The majority of commercial techniques developed for automatically collecting traffic 

data focus on vehicular traffic. The technological aspects of automated pedestrian data collection 

are generally more involved than vehicular traffic. The majority of walking speed studies in the 

literature does not make use of automated video analysis for collecting pedestrian data. In this 

study, an automated system for collecting pedestrian walking speed using video analysis was 

developed and tested. A system previously developed for vehicle detection and tracking was 

significantly modified to adapt for particularities of pedestrian movement and to discriminate 

pedestrian and motorized traffic. The system was tested on real video data collected at 

Downtown area of Vancouver, British Columbia, during day- and night-time conditions. It was 

found that pedestrians walk faster at marked crosswalks than sidewalks. Walking speed was 

more variable at unmarked crosswalks compared to marked crosswalks. Gradient and lighting 

conditions were identified as statistically significant variables that affect walking speed.  

Several conclusions can be drawn from this research work. First, the accuracy of walking 

speed calculations was sensitive to camera calibration parameters. Several challenges were faced 

during the recovery of the camera parameters due to site-specific conditions. A robust camera 

calibration technique was developed and reported in this study. Second, night-time conditions 

proved to be the most difficult as expected because of the obscurity of pedestrian outlines and 

video recording noise. A special set of detection parameters was used for night videos and results 

obtained are satisfactory. Third, there is a lack of a systematic procedure for evaluating video 

analysis techniques. There is also no public benchmark to compare various techniques. Finally, 

the literature of pedestrian observational studies is yet to benefit from automated video analysis 

techniques. It is expected that the system presented in this study will be further improved by 

adding other appearance-based techniques.  
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TABLE 1  Sample Walking Speed Studies with Reported Observation Methods and Factors Affecting Walking Speed 

 

Study 
Reported 15th Percentile 

Walking Speed 
Reported 50th Percentile 

Walking Speed 
%  difference 

from standards 
1 

Number of 
subjects 

Method 
Significant 
Factors 

2 
Insignificant 

Factors 
 

        

Dahlstedt(35) 0.67 - -26% N/A 1
3
  1

4
 - 

Fitzpatric et al.(36) 0.9 - 0% 2552 2 1 5,8,6,2 

Guerrier et al.(37) 0.66 - -27% 263 2 1 - 

Gates et al. (38) 0.92 - 2% 1947 1,2 1,5,6 2 

Hui et al.(39) - 1.22 -6% 1882 2 1,2 - 

Knoblauch et al.(40) 0.97 - 8% 7123 1 1,3 2,4-8 

Lam and Cheung(41) Model - N/A 16453 3 4,6,9,10,11 - 

Lam and Morrall(13) Model - N/A N/A 2 4,6,9,11 - 

Lee and Lam(42) Model - N/A 14886 3 4,11 - 

Montufar et al.(43) 0.88 - -2% 1792 1 
 

1,3,4 
 

- 

Stolloff et al.(5) 1.03-1.16 - -64% 2603 1,2 1 - 

Ye et al.(44) Model - N/A 2089 2 11 - 
        

1 We refer to the most recent recommended updates for MUTCD as standards (1.3 m/s average and 0.9 m/s 15
th

  percentile) 
 

2 Significance is statistical and/or practical. The assessment of the practical significance of walking speed factors was either directly reported in the studies or performed 
by the authors of this study. Insignificant factors were treated ins similar manner.  
 

3 Number indications: 1) Field observations, 2) Manual video analysis, 3) Semi-automated video analysis,  
 

4 Number indications: 1) Age and/or walking problems, 2) Gender, 3) Season /weather (precipitation, snow, temperature), 4) Pedestrian facility type (Crosswalk, sidewalk, 
stairway, midblock crossing, experiment setting), 5) Group size, 6) Traffic control (Pedestrian signal type, unsignalized, speed limit), 7) site specifications (Marking, 
geometry, road classification, median, lane usage), 8) Vehicular traffic, 9) Indoor/outdoor, 10) Activity area (Shopping, commercial, recreational, etc.), 11) Pedestrian 
traffic characteristics (flow, density, directional split). 

 

 



Ismail, Sayed, and Saunier  17 

 

TABLE 2  Summary of Walking Speed Statistics  

 

Movement 
No. Pedestrian 

objects 

Average 

(m/s) 

Stan. Dev. 

(m/s) 

P-value (difference in means between column 

and row movement types) 

East-West 

UCW 

East-West 

SW 

West-East 

UCW & SW 

East-West 

UCW
1 907 1.406 0.262 - - 

<0.0001 
East-West 

SW
2 1148 1.0436 0.2797 - - 

West-East 

UCW 289 1.2627 0.3031 <0.0001 - 
- 

West-East SW 44 0.9657 0.2365 - 0.0333 

MCW
3 162 1.315 0.3722 0.0002 - 0.0069 

Night-time 656 1.1316 0.2061 - - <0.0001 

1 UCW: unmarked crosswalk   2 SW: sidewalk    3 MCW: marked crosswalk 
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FIGURE 1  Layout of system components  
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FIGURE 2  Pedestrian tracks at Site 1. Left figure shows tracks in the image plane. Right 

figure shows the same tracks projected on an orthographic image. The trajectories are 

classified by object type (vehicles or pedestrians) and direction. Clusters 1 to 3 are for 

pedestrians moving East-West, West-East and Crossing respectively, while cluster 4 is for 

vehicles.  
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FIGURE 3  A sample frame from night-time video analysis. Displayed are red bounding 

boxes around pedestrian objects and walking speed. 
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FIGURE 4  the figure shows pedestrian trajectories that crossed through the marked data 

collection area. Trajectories are collated and projected to the world image from different 

videos with different fields of view and hence may be truncated in different regions. 
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FIGURE 5  (a) walking speed distribution for pedestrians moving through the data 

collection area shown in Figure 4 across Robson St. (b) walking speed distribution for 

pedestrians moving from East to West through corresponding data collection areas on both 

sidewalks of Robson St. 
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FIGURE 6  (a) Validation of walking speed measurements. Horizontal axis depicts walking 

speed based on the time interval required to walk between two check lines. Vertical axis 

depicts the average walking speed within the same time interval based on automated 

pedestrian tracking. (b) Validation of walking speed measurements of night-time 

conditions. 
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