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ABSTRACT

Video-based collection of traffic data is on theeriCamera calibration is a necessary step in all
applications to recover the real-world positionshef road users of interest that appear in the
video. Camera calibration can be performed basddainre correspondences between the real-
world space and image space as well as appearahgagllel lines in the image space. In urban
traffic scenes, the field of view may be too lindit® allow reliable calibration based on parallel
lines. Calibration can be complicated in the cddaapmplete and noisy data. It is common that
cameras monitoring traffic scenes are installeddgetalibration was undertaken. In this case,
laboratory calibration, which is taken for granteanany current approaches, is impossible. This
work addresses various real world challenging ¢dsegxample when only video recordings
are available, with little knowledge on the camgpacifications and setting location, when the
orthographic image of the intersection is outdatedyhen neither an orthographic image nor a
detailed map is available. A review of the curner@thods for camera calibration reveals little
attention to these practical challenges that avisen studying urban intersections to support
applications in traffic engineering. This study s®@ets the development details of a robust
camera calibration approach based on integrattalection of geometric information found in
urban traffic scenes in a consistent optimizatramiework. The developed approach was tested
on six datasets obtained from urban intersectiorigitish Columbia, California, and Kentucky.
The results clearly demonstrated the robustneisegiroposed approach.



-G I V)

O oo 41 &N WL

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37

Ismail, Sayed, and Saunier 3

1. BACKGROUND
A research stream that is gaining momentum initrafigineering strives to adopt vision-based
techniques for traffic data collection. The useidkeo sensors to collect traffic data, primarily by
tracking road users, has several advantages:

1. Video recording hardware is relatively inexpensavel technically easy to use.
A permanent record of the traffic observationsaptk
Video cameras are often already installed and elgtmonitoring traffic intersections.
Video sensors offer rich and detailed data.

Video sensors cover a wide field of view. In manstances, one camera is sufficient to
monitor an entire intersection.

6. Techniques developed in the realm of computer nisiakes automated analysis of
video data feasible. Process automation has thengalye of reducing the labour cost and
time required for data extraction from videos.

arwbd

In a typical video sensor, observable parts ofwaald objects are projected on the surface of an
image sensor, in most cases a plane. An unavoidathetion in dimensionality accompanies
the projection of geometric elements (points, ljireds.) that belong to a 3-dimensional Euclidian
space (world space) onto a 2-dimensional imageesjizamera calibration is conducted to map
geometric elements, primarily road user positidrmsn image space to the world space in which
metric measurements are possible. The recovemabiworld tracks of road users supports
several applications in traffic engineering. Exagsphre the analysis of microscopic road user
behavior, e.g. measuring temporal and special pribxifor traffic safety analysis (1; 2),
measurement of road user speed (3; 4; 5), andcteafints (6). In addition, conducting road
user tracking in real-world coordinates can imprtraeking accuracy by correcting for
perspective effect and other distortions due tgegtmn on the image plane. Camera calibration
enables the estimation of camera parameters sirffitdreproject objects from the image space
to a pre-defined surface in the real-world spaceamera can be parameterized by a set of
extrinsic and intrinsic parameters. Extrinsic caangarameters describe camera position and
orientation. Intrinsic camera parameters are necgss reduce observations to pixel
coordinates.

Three major classes of camera calibration methadse identified. First are traditional
methods based on geometric constraints either fouadscene or synthesized in the form of a
calibration patterns. The second class contairiscakbration methods that utilize epipolar
constraints on the appearance of features in diftamage sequences taken from a fixed camera
location. Camera self-calibration is sensitivertitialization and can become unstable in case of
special motion sequence (7) and in case intrinsfarpeters are unknown (8). Active vision
calibration methods constitute the third kind oftheal. They involve controlled and measurable
camera movements.
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Only the first class of methods lends itself tdficanonitoring in which cameras have
been fixed with little knowledge of their intringo@rameters and control over their orientation,
as is the case with many already installed trafimeras. Other approaches include: linear and
non-linear, explicit and implicit (9). Non-linearatihods enable a full recovery of intrinsic
parameters, as opposed to linear methods. Bothoaketinay be combined, e.g. in (10), by
obtaining approximate estimates using linear methvaith further refinements using non-linear
methods. Inferring camera parameters from impifasformation matrices obtained using
implicit methods is susceptible to noise (11). lting calibration to extrinsic parameters gives
rise to the topics of pose estimation (12).

Despite the numerous studies of the topic of caroalrbaration, several challenges can arise due
to particularities of urban traffic scenes.

1. Many of the photogrammetry and Computer Vision (86hniques available in the
literature do not apply due to difference in comt&ardware, and target accuracy.
Powerful and mature tools such as self-calibratingdle in the existing literature are not
always possible to apply for relatively close-rangeasurements in urban traffic scenes,
especially for images taken by consumer-grade casra@ntaining noisy or incomplete
calibration data (13). In addition, other methadphotogrammetry and CV depend on
observing regularization geometry or a calibrapattern. In the typical cases where
video cameras are already installed to monitoatfi¢rscene, or when only video records
are available, this procedure cannot be applied.

2. Many of existing techniques rely on parallel veditriacks, in lieu of painted lines, for
vanishing point estimation (14) (5). Vehicle tradeas be extracted automatically using
computer vision techniques. These methods arecphatiy useful for self-calibration of
pan-tilt-zoom cameras used for speed monitoringuoal highways. However, the
vehicle motion patterns in urban intersectionsrarteprevalently parallel. An example is
shown in Figure 1.

3. Much of the regularization geometry in traffic sesrcomprises elements such as road
markings that may be altered in many ways. Insghisly, one of the the monitored traffic
sites “BR” was repainted after the orthographicgmavas taken, making point
localization difficult. Using only point correspoances in this case can be unreliable.

4. A significant number of camera calibration methoalg on the observation of one of
more sets of parallel co-planar lines. By estintathre points of intersection of these sets
of lines, i.e. vanishing points located at the baoniline of the plane that contains these
lines, camera parameters can be estimated. In ardific environments, the field of
view of the camera can be too limited to allow depth of view necessary for the
accurate estimation of the location of the vaniglpoints. To achieve desirable accuracy,
camera calibration must be based on additional g&wmnformation.
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5. In many cases, cameras monitoring urban trafferggctions are already installed. Many
of these cameras function as traffic surveillane@aks, a function that does not
necessarily require accurate estimation of road pe&tions. Given the installation cost
and intended functionality, in-lab calibration afrinsic parameters, e.g. using geometric

patterns, can be difficult.

As illustrated in Figure 1, 2 and Table 1, the msgd camera calibration approach was mainly
motivated by issues encountered in case studieselissues are the repainting of traffic
pavement marking, the field of view is too limiteddnon-linear distortion is too strong to enable
accurate estimation of vanishing point(s), andathalysis of video sequences collected by other

parties. In addition, the geometric regularitiearadant in traffic scenes offer geometric
information besides the appearance of paralleslthat can increase the accuracy of camera

calibration. The majority of the applications sugpd by this study involved the recovery of
real-world coordinates of pedestrian tracks. Pe@d&st move significantly slower than the
motorized traffic, a characteristic that evidemtguired higher accuracy for camera parameters.
Relying only on geometric information provided kgrallel lines yielded camera parameters that

provided unsatisfactory pedestrian speed estimates.

TABLE 1 Summary of Case Studies

Ca(s:((e)dS;udy Site / City Application Issues Encountered tao? | A% E
BR-1 Downtown — Pedestrian Walking Outdated orthographicmap | 13| 6 | 4 | O
BR-2 Vancouver Speed (3) No convergent lines 11|12 6 | O
BR-3 510 5| 0
BR-4 910 3| 0

PG Downtown — Automated study of No convergent lines 22| 2| 2 0

Vancouver Pedestrian-vehicle

conflicts (2)

OK Chinatown -| Automated before-and- Camera unaccessible and notset4 | 2 | 9 | 34

Oakloand | after study of pedestrian- by authors

vehicle conflicts
K1 Kentucky Automated analysis of| Camera unaccessible and notsed | 7 | 2 | 30
K2 vehicle-vehicle conflicts by authors o7 |2 39
Video quality is low
Strong non-linear distorsion
No orthographic image

1 The number of point correspondences availabeldtibmation.
2 The number ofine segments annotated in the image space wittvikmeal-world length.

3 The number of annotated pairs of lines in the ingEpee the angle between which is known in woritsp
4 The number of line segments annotated for equadcs constraints. The endpoints of each line seganen

annotated at two locations in the camera fieldiefw
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Figure 1 The difficulty of relying on the automated extraction of road user tracks. Figure a) shows the motion patterns
of vehicles at a busy intersection in China Town, Oakland-California (sequence OK). Reliance on vehicle tracks for
vanishing point estimation is challenging because vehicle tracks do not exhibit enough parallelism. Many patterns
representing turning movements and lane changing. Parallel vehicle tracks have to be hand-picked which is tantamount
to manually annotating lane marking. Figure b) shows pedestrian motion patterns. It is evident that pedestrian tracks do
not exhibit prevalent parallelism within crosswalks.

Figure 2 An illustration of camera calibration issues that arise in urban traffic scenes. Figure a) shows a frame taken
from video sequence from video sequence BR-1 shot at Vancouver-British Columbia. The estimation of the vanishing
point location based on lane marking was unreliable. The obtained camera parameters were initially not sufficient to
measure pedestrian walking speed in adequate accuracy. The integration of additional geometric constraints enhanced

the estimates of the camera parameters and met the objectives of this application. Figure b) shows a sample frame from
video sequence K1 of traffic conflicts shot in Kentucky. Significant radial lens distortion is observed at the peripheries of
the camera field of view. A reliable estimation of the vanishing point location requires the consideration of line segments
that extend to the peripheries of the camera field of view. The curvature of parallel lines was significant in these
locations and the estimation of the vanishing point was challenging.
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This study describes a robust camera calibratignageh for traffic scenes in case of incomplete
and noisy calibration data. The cameras used snstiidy were commercial-grade cameras; most
were held temporarily on tripods during the videovsy time, others were already installed
traffic cameras. A strong focus of this study istlea positional accuracy of road users,
especially pedestrians. This was possible by rglgimmanually annotated calibration data, not
vehicle tracks as is the case in automatic canadifaration, e.g. (5).

The uniqueness of this study lies in the compasitibthe cost function that is minimized
by the calibrated camera parameters. The costiumcbmprises information on various
corresponding features in world and image spades diversity of geometric conditions
constituted by each feature correspondence entitdexccurate estimation of camera
parameters. Features are not restricted to pornégmondence or parallel lines, but extend to
distances , angles between lines, and relativeaappee of locally rigid objects. After annotating
calibration data, a simultaneous calibration ofiagic and intrinsic camera parameters is
performed, mainly to reduce error propagation (15).

The following sections describe in order, a breafiew of previous work, the
methodology of camera calibration, and a discussfdour case studies. Video sequences in
these case studies were collected from variousitotain the Downtown area of Vancouver,
British Columbia, Oakland, California, and an unkmdocation in Kentucky.

2. PREVIOUSWORK

There is an emerging interest in the calibrationasheras monitoring traffic scenes, e.g. (16)
(17) (18) (19) (5) (15). An important advantagdraffic scenes for this purpose is that they
typically contain geometric elements such as pdées marking, and curb lines. The appearance
of these elements is partially controlled by tlggometry, therefore providing conditions on the
camera parameters. Common camera calibration agipgearaw the calibration conditions

from a set of corresponding points, e.g. (10) (Bépmetric invariants such as parallel lines (21),
or from line correspondences (22).

These approaches however overlook other geometidarities such as road markings,
curb lines, and segments with known length. Theafigezometric primitives is becoming more
popular, e.g. in recent work (19) and citationgeire However, two main issues can arise in
calibrating traffic scenes that cannot be addressedy existing techniques. First, most of the
existing techniques construct the calibration eimderms of the discrepancy between observed
and projected vanishing points. However, camerations may be at significantly high altitude
or its field of view too limited to reliably obsexthe convergence of parallel lines to a vanishing
point. Finding initial guesses can be also challegpg such settings. Second, a detailed map or
up-to-date orthographic image of the traffic sceray be unavailable. In this case, reliance on
point correspondences is not possible. The propcaidaration approach draws the calibration
information from the real-world lengths of obsenlie@ segments, angular constraints, and the
dimension invariance of vehicles traversing the eanfield of view.
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3. METHODOL OGY
3.1. Camera Model

In this camera calibration approach, the canomodiole camera model is adopted to represent
the perspective projection of real-world pointstiba image plane. A projective transform that
maps from a poinkKeR™ to a pointY€RX can be defined by @& + 1) x (n + 1) full-rank

matrix. In the case of mapping from 3-D Euclidepace to the image plane= 2 andn = 3.

In homogeneous coordinates, the projective transfan be represented by a matiiy, and a
normalization termw as follows:

o)=Y o

Similar to the column vectors in EquationTlis defined up to a scaling factor while containing
11 degrees of freedom. In theory, a total of 11e@nparameters can be recovered: 6 extrinsic
and 5 intrinsic. However, 2 intrinsic parameteses arimarily considered in the proposed
approach. An additional non-linear parameter, tddies distortion, is calibrated for using as an
initial estimate of the calibrated linear camereap@eters. The matriX can be decomposed into
two matrices such thal:l = M x N, where matrixN,,, maps from world coordinates to camera
coordinates, and matriMs,, maps from camera coordinates to pixel coordindtaswledge of
extrinsic camera parameters, comprising 3 rotadingles and a translation vector, is sufficient
for generatindN. MatricesM andN are calculated as follows:

fy —fecot® u, O

R t
Nz[ ] M= I . (2
01><31 0 sin 6 Yo 0 ()
0 0 1 0

wheref, andf, are respectively referred to as the horizontahartical focal length in pixels)

is the angle between the horizontal and verticaba the image plane, afd,, v,) are the
coordinates of the principal point. The principalm is assumed to be at the centre of the image
in the video sequence. The second-degree formeafitial lens distortion is represented by the
radial lens distortion parameteras follows:

x=x*(1+kr®)&y=yx*(1+kr? .. (3)
where(x, y) are image space coordinates measured in pix€Js;) are the image space

coordinate corrected for radial lens distortion anslthe uncorrected distance in pixels from the
principal point to a point on the image space.

3.2. Cost Function

There is no universally recognized cost functioneimors in a camera model (19). There are
stable formulations developed in the literaturg, g (23), for calibration data consisting of
point correspondences. It is however more com@dcéd construct a proper cost function if the
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calibration error is based on different types adrgetric primitives. A proper cost function
should satisfy the following conditions:

1. Uniformly represent error terms from different gesiric primitives, i.e. consistent weights

and units. This is possible if the cost functiocasstructed in real-world coordinates.

2. Be perspective invariant, i.e. not sensitive togmeesolution or camera-object distance.
It is also desirable that a cost function be meghinn further image analysis steps so that
keeping account of error propagation is possildgis§ing condition one in a linear algebra, and
without special mapping, entails some assumptiaticarapproximation. Following are the set of
conditions proposed in this approach to represeatibrated camera model:

1.

3.

Point correspondences. Matching features are pamtstated in the image and world
spaces. This condition matches the reprojectiqroofts from one space to their
positions in a current space. For unit consistepoint positions in world space are
compared to thback-projection of points from the image space to the world space.

Distance constraints. This condition compares thidce between the back-projection
of two points to the world space and their trugasise measured from an orthographic
map or by field measurements.

Angular constraints. This condition compares the @ngle between the two annotated
lines to that calculated from their back-projectiorworld space. Special cases are angles
of 0° in case of parallel lines, e.g. lane markingsertical objects, and 90° in case of
perpendicular lines, e.g. lane marking and stogslin

Equi-distance constraints. This condition compé#neseal-world length of a line
segments observed at different camera depths.cohiition preserves the back-
projected length of a line segment even if it vairethe image due to perspective.

The following cost function is composed of four qmments, each representing a condition:

where,

2 — 2
fX) = ZiEC,jED,keA,mEE”APi”22 + (As;)” + (ltanAay)” + (Aly)? .. (4)

X is a vector of camera parameters,

C,D, A, andE are respectively the sets of calibration poinfedénce, distances, and
angular constraints, and equi-distnace constraints.

||AP; ]|, is the real-world distance between observed ank-peojected calibration points
in thei™ set of point correspondences,

As; is the difference between observed and projedstdrites in th@" set of distance
correspondence,

1is the average length of the back-projected lawrsents on the pair of lines that defines
the angular constraint,
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 Aay is the difference between annotated and calcukatate angle between tR8 back-
projected pair of line segments that defines tlgbam constraint, and

* Al is the difference between the real-world lengtla ihe segment calculated at two
locations with different depth of view. This cantypically obtained by measuring the
distance between two points on a vehicle traversitrgffic intersection.

Point back-projection, i.e. mapping from image spiacworld space, is performed efficiently
using the homography matrk that corresponds to a set of camera paramgtekdeast square
estimation of the homography matrix is conductadgifour points selected frof, usingX. If

the non-linear camera distortion parameter is eg8oh back-projection using the homography
matrix is not accurate. In this case, back-propecis cast as a minimization problem, such that
the projection of the estimated world-space pasjticom world space to image space, achieves
a minimum difference from the annotated image pwsitThe initial estimate of this
minimization problem is the world-space positioragfoint using homography. A basic Quasi-
Newton non-linear optimization is sufficient forcacate estimation of the world-space position.

The cost function component that represents angolastraints has the useful property
of being proportional to the length of the annaddiee segments that define the angular
constraint. This assigns larger weight to anglesenpoecisely defined using long edges.

The previous cost function describes linear disznepes between observed and back-
projected geometric primitives, all expressed ad-keorld unit distance. This construction of the
cost function clearly meets the previously proposaaditions. It is noteworthy that the
construction of the cost function in pixel coordes® commonly adopted in the literature, is
significantly cheaper to compute than the propasest function. In the latter case, point
projection to image space is a closed-form opanafitie proposed camera calibration approach
is designed as an accurate one-time operationpigosudata extraction from video surveys in
which computational efficiency is of lesser impoxta. In addition, the expression of the
projection error in pixel coordinates is implicithyased toward features closer to the camera
(represented by more pixels). This may not be dbkrin all applications. For example, the case
study based on the video sequence K1, shown irré-Byb, focuses on events that take place in
the furthest intersection approach.

3.3. Implementation Details

The intrinsic camera parameters optimized undépredion are focal length, skew angle, and
radial lens distortion. The extrinsic parameteestae translation and rotation (six parameters) of
the camera coordinate system from the world coatdisystem. The selection of these camera
parameters yields more accurate results than ifnggrtion is conducted for each element of the
transformation matriceM andN (Equation 2).

The minimization of the cost function in Equatioaer the camera parameters is
performed using the Nelder-Mead (NM) simplex altjon. This algorithm was selected over the
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commonly used Levenberg-Marquardt (LM) which failedome cases to converge when the
initial estimate of the camera parameters was cairate. When both converged, NM was
consistently more computationally expensive. Comapomal cost is of lesser importance for the
applications targeted by this approach.

The initial guesses for the case study describ&mhbeere obtained using an estimate of
the camera position in an orthographic map of taitored traffic intersections, of the camera
height, and of the location of the back-projectodrthe principal point on the road surface. The
estimate for the focal length was found using presiinformation and assuming away
perspective. Obtaining an accurate initial estineditine focal length and camera height proved
difficult and was in most cases far from the caltbd value. A similar issue was encountered for
estimating the camera height of video sequencéswvigr@ not collected by the authors
(sequences K1, K2, and OK). The calibrated cameighhfor K1 and K2 were 11.5 m and 10.9
m respectively, while their initial estimate waSrh.

The implementation of this method was conductedATLAB (24). A toolbox was
developed to annotate the calibration data, finthirestimates, conduct the camera calibration
and visualize the calibration results. The follogvsection provides a review of four case studies
in which the proposed camera calibration approaokiged adequate estimates of camera
parameter. The intended applications were carngdwaccessfully using the obtained camera
parameters (2) (3).

5. CASE STUDIESAND RESULTS

The four case studies analysed using the propasedra calibration approach are summarized
in Table 1. Camera calibration is conducted foewvidequences collected from the downtown
area of Vancouver, British Columbia (video sequsricd from site BR and sequence PG),
Chinatown in Oakland, California (OK), and an umitiged intersection in Kentucky (K1 and
K2). When possible, real-world data was extractethfan orthographic image from Google
Maps and in-field distance measurements.

5.1. Annotation of Calibration Data

Corresponding points are annotated in image anttvepaces. The real-world coordinates of
points in the image space can be calculated fr&in glosition on the world map. The true length
of line segments that constitute distance and dgiance conditions is calculated from the
orthographic image. In case of sequences BR-1edrghl-world length of line segments was
collected by in-field measurements (total of 2Xield measurements using a measuring wheel).
This was necessary to obtain camera calibration agturacy that supports the measurement of
pedestrian walking speed (refer to Table 1). Réitmes that constitute the angular constraints
are annotated in the image space. These linesaaatlgb lane markings, parallel light poles and
road-side signs, and perpendicular road markinigsir& 3 shows the calibration data for
sequence BR-2.
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a) b)
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Figure 3 Calibration data for video sequence BR-2. Point correspondences are annotated with their serial numbers.
Points marked with red atre calculated and points in blue are annotated. The segments in red define the distance
conditions. The segments in blue define pairs of lines for angular conditions. Figure a) shows the calibration data
(points, and lines) in the image space. Figure b) shows the back-projection of the calibration data to world-space.

5.2. Effect of Difference Cost Function Components

In order to investigate the effect of using a mixgeometric primitives, the cost function
components in Equation 4 were incrementally intaeals The sizes of the different calibration
datasets for each scene are shown in Table 1.Neat Square Error (RMSE) was calculated
by leaving out one testing observation, from €esdD, each at a time and adding up the error
for each testing data point. The total numbereafitions required for each scene is the
maximum of the number of data points in €&13, and A. For example, the number of iterations
is 13 for BR-1 and 12 for BR-2. The performanceanes BR-3 and BR-4 is noteworthy given
the limited number of calibration points availabtehese scenes. Figure 4a shows the reduction
in back-projection error for sequences BR-1:4 a@dwith the introduction of additional cost
function components.

In order to investigate the effect of the equi-ali&te constraint, the video sequence OK
was selected. This sequence has the largest nuwhbalibration data points besides having the
challenge of being observed from an unknown carsettang location. Figure 4b shows the
back-projection error using different compositiafishe cost function. The error was calculated
in terms of the difference between the calculatetitaue lengths of a validation set of 12 line
segments. These line segments were not includégk icalibration data set.

There is a clear advantage of using calibratioa daaddition to estimates of point
correspondences (four corner points which coordmastimated based on an assumed lane
width of 3.5 m) referred to as case 1 in Figure®iere is also an advantage over the use of
angular constraints only (case 2) which is analsgowcamera calibration based on vanishing
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point estimation. The addition of all cost functiocomponents provides (case 4) however only
marginal improvement compared to using point cmasiences only (case 3). This likely
occurs because of the abundance of accuratelyaedgboint correspondences in this video
sequence.

a)
2.5
Case 3: Annotated point BBR-1
) correspondences ot
g Case 5: case 3 + distance constraints BR-3
o Case 6: case 5 + angular constraints H BR-4
g 15 W PG
2
2
5)
5 1
~
3
® 05
0
3 5 6
Case number of the cost function
b)
0.250
0.230 Case 1: Estimates of point correspondences
' 0.211 Case 2: Angular constraints & equi-distance
5 0210 € Case 3: Annotated point correspondences
qt, 0.190 Case 4: All calibration data
§ 0.170 0.150
.’i 0.150
5
§_ 0.130
S 0.110 0.098 0.096
] G
0.090
0.070
0.050
1 2 3 4

Case number of the cost function

Figure 4 An illustration of the reduction in camera calibration error due to the inclusion of various cost function
components. Figure a) shows the RMSE error of test sets BR-1:4 and PG. The RMSE error is calculated based on the
error back-projection of all calibration points and distances, each left out one at a time for validation. Figure b) shows the
back-projection error in terms of the difference between the true and calculated lengths of 12 line segments in sequence
OK. The 12 segments were not used in the calibration. The length difference is normalized by the segments length:

Back projection error = |Lyye — Leatcutateal /Lerue-

The effect of the addition of cost function compaisevas more evident in sequences K1 and
K2. The camera calibration for these sequencedheasiost challenging. The video sequence,
collected from an unidentified site in Kentuckyntains a valuably large number of vehicle-
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vehicle traffic conflicts that were analyzed inifiatent study. The effect of non-linear lens
distortion was visible for almost all observed Isegments. As shown in Figure 5a, there is a
clear advantage of adding all cost function compts€l'he back-projection error was calculated
based on the difference in the calculated real-dvi@mgth of line segments observed from two
different cameras for the same site, corresponimtatasets K1 and K2. Figure 5b shows the
validation results for camera calibration with cdete cost function components (case 5).
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Figure 5 The reduction in back-projection error due to the inclusion of different cost function components for video
sequences K1 and K2. Figure a) shows the back-projection error measured as the difference between the real-world
lengths of a total of 20 line segments calculated from two camera settings at K1 and K2. The discrepancy in the lengths
of the validation line segments were normalized by each line segment length (average 12.57 m). Figure b) shows the
lengths of the validation line segments for case 5. Refer to Figure 4 for the indication of cases 1:5.
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5.3. Visualization of Results

In order to visualize the accuracy of the estimaimuera calibration parameters, a reference
grid is depicted in Figure 6 for sequences BR-2, &t OK. The reference grids for sequences
K1 and K2 are shown in Figure 7. For sequencesrifilk®, the calibrated radial lens distortion
parameter could explain the apparent distortiothefooundaries of the closer sidewalk. The
distortion at the further sidewalks could not benptetely captured. This demonstrates that
additional non-linear parameters are required piuza other types of image distortion evident
in this video sequence.

Sample results of applications supported by thenas¢éd camera parameters for these
case studies are shown in Figures 8 and 9.

6. CONCLUSIONSAND FUTURE WORK

The use of video analysis techniques for transportapplications is on the rise. Camera
calibration is necessary for recovering metric infation from video sequences. Despite the
development of successful methods, current appesadt not address critical issues that arise
when monitoring traffic scenes, especially wherhtagmera calibration accuracy is required.

This paper proposed a robust camera calibratioroaph that overcomes several of these
issues. As supported by the reported results, dkielrtomposition of the cost function that
defines the error in the camera calibration pararsdielps integrating clues from various
geometric regularities in traffic scenes.

The formulation of this cost function in a linedgebra entails assumptions regarding the
angular constraints. An important extension of wnisk is the reformulation of the cost function
using geometric algebra in which different geoneettements can be uniformly represented.
Further improvements to the method are the incfusicadditional non-linear parameters such
as the tangential distortion that was evident dewisequences K1 and K2.
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Figure 6 Refernce grid for video sequences BR-2, PG, and OK, overlaid over frames of the video sequence and
orthographic images. The grid spacing is 1 m and the height of the vertical reference lines (depicted in blue) is 4.0 m.
Sequences BR-1 and BR-3:4 are recorded at the same site (BR) with different field of views. Their results grid are similar
to BR-2 and omitted for space limitation.
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a) K1

b) K2

Figure 7 Reference grids for video sequences K1 K2. The non-linear calibration parameters could capture the
distortions at the closer sidewalk of sequences K1 and K2. This is evident by comparing the curvature of crosswalk
boundaries and the grid side (black dashed). The grid spacing is 2.0 m and the height of the displayed vertical line
segment (depicted in blue) is 4.0 m.
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Figure 8 In this traffic safety application, accurate road user tracks are required to measure their temporal and spatial
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proximity. Left are the back-projected pedestrian and motorist tracks. Right are the CV-based tracks of the interacting

road users. Figures a and b show the world and image space of video sequence PG (the study was reported in (2)).
Figures ¢ and d show the world and image space of video sequence OK.
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Figure 9 Validation of walking speed measurements reported in (3). Horizontal axis depicts walking speed based on
the time interval required to walk between two check lines. Vertical axis depicts the average walking speed within the
same time interval based on automated pedestrian tracking. Figures a) and b) show the validation of walking speed
measurements for two different sets, during day- and night-time respectively.
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