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ABSTRACT1
Despite the extensive studies on the performance of video sensors and computer vision algorithms,2
calibration of these systems is usually done by trial and error using small datasets and incomplete3
metrics such as simple detection rates. There is a widespread lack of systematic calibration of4
tracking parameters in the literature.5

This study proposes an improvement in automatic traffic data collection through the opti-6
mization of tracking parameters using a genetic algorithm by comparing tracked road user trajecto-7
ries to manually annotated ground truth data using the Multiple Object Tracking Accuracy (MOTA)8
as the fitness function. The optimization procedure is first performed on a given dataset and then9
validated by applying the resulting parameters on a separate dataset. A number of problematic10
tracking and visibility conditions are tested using five different camera views selected based on11
differences in weather conditions, camera resolution, camera angle, tracking distance, and cam-12
era site properties. The transferability of the optimized parameters is verified by evaluating the13
performance of the optimized parameters across these data samples.14

Results indicate that there are significant improvements to be made in the parametriza-15
tion. Winter weather conditions require a specialized and distinct set of parameters to reach an16
acceptable level of performance, while higher resolution cameras have a lower sensitivity to the17
optimization process and perform well with most sets of parameters. Regarding the impact on18
traffic variables, average spot speeds are found to be insensitive to MOTA while traffic counts are19
strongly correlated.20
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INTRODUCTION1
The use of video data for automatic traffic data collection and analysis has been on an upward trend2
as more powerful computational tools, detection and tracking technology become available. Not3
only have video sensors been able for a long time to emulate inductive loops to collect basic traffic4
variables such as counts and speed as in the commercial system Autoscope (1), but they can also5
provide higher-level information regarding road user behaviour and interactions more and more6
accurately. Examples include pedestrian gait parameters (2), crowd dynamics (3) and surrogate7
safety analysis applied to motorized and non-motorized road users in various road facilities (4, 5,8
6). Video sensors are relatively inexpensive and easy to install or already installed, for example9
by transportation agencies for traffic monitoring: large datasets can therefore be collected for large10
scale or long term traffic analysis. This so-called “big data” phenomenon offers opportunities to11
better understand transportation systems, presenting its own set of challenges for data analysis (7).12

Despite the undeniable progress of the video sensors and computer vision algorithms in13
their varied transportation applications, there persists a distinct lack of large comparisons of the14
performance of video sensors in varied conditions defined for example by the complexity of the15
traffic scene (movements and mix of road users), the characteristics of cameras (8) and their in-16
stallation (height, angle), the environmental conditions (e.g. the weather) (9), etc. This is par-17
ticularly hampered by the poor characterization of the datasets used for performance evaluation18
and the limited availability of benchmarks and public video datasets for transportation applica-19
tions (10). Tracking performance is often reported using ad hoc and incomplete metrics such as20
“detection rates” instead of detailed, standardized, and more suitable metrics such as the Multiple21
Object Tracking Accuracy (MOTA) and Precision (MOTP). This metric takes into account other22
factors such as the error in the object’s position estimate, missed detections and false positives on a23
frame by frame basis (11). Finally, the computer vision algorithms are typically manually adjusted24
by trial and error using a small dataset covering few conditions affecting performance while the25
reported performance evaluated on the same dataset is thus over-estimated: comparing to other26
fields such as machine learning, it should be clear that the algorithms should be systematically27
optimized on a calibration dataset, while performance should be reported for a separate validation28
dataset (12).29

While the performance of video sensors for more simple traffic data collection systems has30
been extensively studied, not all factors have been systematically analyzed and issues with param-31
eter optimization and lack of separate calibration and validation datasets is widespread. Besides,32
the relationship of tracking performance with performance of traffic parameters has never been33
fully investigated.34

The objectives of this paper are threefold:35

1. to improve the performance of existing automated detection and tracking methods for36
video data in terms of the accuracy of tracking, through the optimization of tracking37
parameters using a genetic algorithm comparing the tracker output with manually anno-38
tated trajectories;39

2. to study the relationship between tracking accuracy, its optimization, and different kinds40
of traffic data such as counts and speeds;41

3. to explore the transferability of parameters for separate datasets with the same properties42



Morse, St-Aubin, Miranda-Moreno and Saunier 3

(consecutive video samples) and across different properties, by reporting how optimiz-1
ing tracking for one condition impacts tracking performance for the other conditions.2

The method is applied to a set of traffic videos extracted from a large surrogate safety study of3
roundabout merging zones (7), covering factors such as the distance of road users to the camera,4
the types of cameras, the camera resolution and weather conditions. As a follow up on (12), this5
new paper investigates more factors and how tracking performance is related to the accuracy of6
traffic parameters.7

This paper is organized as follows: in the next section a brief overview of the current8
state of computer vision and calibration in traffic applications is provided; then the methodology9
is provided in detail including the ground truth inventory, measures of performance and calibra-10
tion procedure; and finally the last two sections discuss the results of the tracking optimization11
procedure and conclusions regarding ideal tracking conditions and associated parameter sets.12

LITERATURE REVIEW13
Computer Vision in Traffic Applications14
Computer vision is used extensively in traffic applications as an instrument of data collection and15
monitoring. Cameras and computer vision are slowly being implemented on-board motorized16
vehicles as part of the sensor suite necessary for vehicle automation, including advanced driver17
assistance systems (e.g. pedestrian-vehicle collision avoidance system (13), vehicle overtaking18
(14)) and optical camera communications systems (15). For traffic engineers, the two primary ap-19
plications of computer vision using stationary cameras include vehicle presence detection systems20
(sometimes referred to as virtual loops) and motion tracking. Presence detection has widespread21
commercial application due to its relatively high degree of reliability which is on par with em-22
bedded sensor technology such as inductive loops; its primary application is in providing traffic23
counts, queue lengths, and basic presence detection (16) for a range of traffic engineering tasks24
ranging from data collection to traffic light control and optimization.25

Motion tracking is a more complex application which aims to extract the road users’ tra-26
jectories continuously with great precision, i.e. their position for every video frame, within the27
camera field of view, from which velocity, acceleration, and a number of other traffic behaviour28
measures may be derived. Due to the increased complexity of tracking, it is generally considered29
less reliable than presence detection systems. There are three main categories of tracking methods:30

1. tracking by detection, which typically relies on background subtraction to detect fore-31
ground objects and appearance-based object classification (17);32

2. tracking using flow, also called feature-based tracking (18), first introduced in (19);33

3. tracking with probability based on Bayesian tracking frameworks (20).34

The NGSIM project was one of the first large-scale video data collection projects making35
use of semi-automated vehicle tracking from freeway and urban arterial video data to obtain ve-36
hicle trajectories for traffic model calibrations (21). Surrogate safety analysis also makes use of37
trajectory data, for example with the early SAVEME project (22, 23), and now more recently with38
extensive open source projects such as Traffic Intelligence (18, 24).39
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Tracking Optimization and Sensor Calibration1
The work done to optimize parametrization of the various trackers is sparse and usually set manu-2
ally by trial and error from experimental results. The instances of automated calibration in (25) and3
(26) used Adaboost training strictly for shape detectors and (27) used evolutionary optimization for4
the segmentation portion. One of the only cases of systematic improvement of the tracking method5
as a whole through evolution algorithms was done recently at Polytechnique Montréal (12): the6
current work shares similarities with this work such as the use of the same measure of tracking7
accuracy for optimization, but this paper deals with motorized traffic instead of pedestrians and8
investigates further the transferability of calibrated parameters not only for the same camera view,9
but across different types of cameras, camera views, and visibility/weather conditions.10
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FIGURE 1 Overview of the optimization process
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METHODOLOGY1
The approach proposed in this paper consists in identifying different conditions that may have an2
impact on tracking performance and traffic variables such as counts. For each condition, we need3
two video samples or regions in the same video where the only or primary difference is the change4
in that condition. The four main steps are as follows:5

1. Selection of sites and analysis zones: five different camera views are specifically se-6
lected to allow for analysis based on the chosen conditions to be compared. Ten minutes7
of video are manually annotated for an analysis zone in each camera view to be used as8
a baseline for the analysis.9

2. Optimization of tracking parameters over the whole annotated period (10 min): a subset10
of the tracking parameters are optimized for each camera view using the chosen mea-11
sure of performance. These results are used to evaluate traffic data and correlations of12
parameters with the measure of performance.13

3. Optimization of tracking parameters over the first five minute period: the tracking pa-14
rameters optimized for the first five annotated minutes of each camera view are applied15
to the whole 10 minute annotated video, as well as to sub-regions of the analysis zones16
(two sub-regions, one close and one far from the camera), in order to evaluate over-17
fitting.18

4. The optimized tracking parameters from step 3 are applied to the full ten minutes of19
each camera view to evaluate the transferability between sites, camera types and weather20
conditions.21

The overview of the methodology is presented in FIGURE 1.22

Ground Truth Inventory23
The ground truth data is obtained through manual annotation of the source video data using the24
Urban Tracker annotation application (28). There are five video sequences selected from three25
different roundabouts presented in Table 1 (a video sequence correspond to a camera views and26
the terms are used interchangeably). S1S and S1W were recorded with similar field of views on the27
first site to compare the weather condition. S1S and S2 show comparable views of two different28
roundabouts (sites 1 and 2). S3V1 was recorded using the same camera as on S1 and S2, and can29
be compared to S1S and S2 to evaluate the impact of the resolution. S3V1 and S3V2 allow to30
compare the impact of the type of camera on the same site, with two different views. For each31
camera view, an analysis zone covering a merging zone of the roundabout is defined inside the32
zone where automated tracking is performed (site analysis mask) as can be seen in FIGURE 2. All33
vehicles going through the analysis zone of each camera view were manually tracked for 10 min34
(with bounding boxes drawn around each vehicle every 5-10 frames). Manual annotation is labour35
intensive: the annotations require between half an hour to one hour of manual labour per minute36
of video, depending on the frame rate and the traffic flow.37
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Site Analysis (Mask)
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Analysis Zone

FIGURE 2 Example of an analysis zone and extracted trajectories for a given camera field
of view

Video Tracking1
The video analysis tool used in this work relies on feature-based tracking and is available in the2
open source “Traffic Intelligence” project1 (18). Feature-based tracking is composed of two main3
steps:4

1. distinct points such as corners are detected in the whole image and tracked frame after5
frame until they are lost;6

2. a road user will typically have several feature on it: the second step consists in grouping7
the features corresponding to individual road users. Two feature trajectories are grouped8
if they are close enough (within distance mm-connection-distance) and if the9
different between their maximum and minimum distance is small enough (within dis-10
tance mm-segmentation-distance). A group of features is saved, corresponding11
to a road user trajectory, if it has at least on average min-nfeatures-group fea-12
tures per frame.13

The main parameters are listed in TABLE 2, including the grouping parameters mentioned14
above. The resulting road user positions may be measured in image or world space, depending15
on whether or not a homography transformation was computed before tracking to project image16
positions to world positions, on the ground plane. A homography was computed for all camera17
views used in this paper using a tool provided in Traffic Intelligence. In addition, because the18
second type of camera used, the GoPro, is subject to strong radial distortion (so called “fish-eye”19
effect), a processing step is added to correct the distortion (see the sample view of S3V2 in Table 1).20
However, since ground truths are also built from undistorted video data, feature-based tracking21
quality should in theory be identical regardless of camera distortion; instead distortion affects22
primarily the quality of the world-space data after homography transformation, be they tracked23
trajectories or manual annotations. Fortunately, this type of error is easily corrected by examination24

1https://bitbucket.org/Nicolas/trafficintelligence/, accessed August 30, 2015

https://bitbucket.org/Nicolas/trafficintelligence/
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of the superposition of satellite imagery and does not warrant special optimization approaches.1
Error tolerance for homography transformation is no more than 1 metre at a tracking distance of2
up to 50 metres. On the other hand, since undistortion is applied to image space instead of to the3
trajectories directly (for a number of technical reasons) some microscopic distortion effects might4
occur to individual pixels, especially at the edges of image space (far data) which could have a5
small impact on tracking quality.6

Quality Control Routines7
A small percentage of trajectories (typically less than 5 per 10-min of data) generated by the8
tracker have several obvious issues and errors. For example: cases of obstruction by large vehicles9
or lamp posts or ghost trajectories seemingly driving through each other. The frequency of these10
errors is too infrequent to optimize algorithmically, but are severe enough to generate strong false11
alarms. Fortunately, they are also easy to identify and correct. Most of these issues are corrected12
or eliminated entirely using several quality control routines from the tools developed for the larger13
project on the roundabout safety (7). These include the following functions:14

• Object integrity verification: verify any corruption in the data structure.15

• Warm-up errors at scene edges: vehicles entering image space are only partially tracked16
until they come within full view, and therefore are lacking in number of tracked features17
which causes issues with feature grouping.18

• Duplicate detection removal: based on proximity and trajectory similarity, only the19
most egregious examples of duplicate detections are removed. Tracking optimization20
should correct most duplicate tracking issues.21

• Outlier point split: when two distinct vehicles within the scene are grouped together,22
they are tracked as a single vehicle which seems to “teleport” instantly across the scene.23
It is split at the time of “teleportation”.24

• Stub removal: the minimum trajectory dwell time is 0.66 s.25

• Alignment filtering: if alignment metadata (lane and sidewalk centerlines) exists, ve-26
hicles that deviate significantly from any typical movements can be flagged for manual27
review as either a severe traffic infraction or tracking error.28

Optimizing Tracking Accuracy29
The tracking parameters listed in TABLE 2 are optimized using a genetic algorithm that aims to30
improve tracking accuracy, comparing the tracker output to the ground truth for a video sequence31
(see overview in FIGURE 1. Each iteration of the genetic algorithm corresponds a set (popula-32
tion) of individuals with each individual representing a complete set of tracking parameters θ: the33
tracker and filtering routines are run on the video sequence for each set of tracking parameters θ.34
The tracker output and the ground annotations are compared in the analysis zone and the genetic35
algorithm will generate a new population of tracking parameters by favouring and combining the36
best tracking parameters of the previous population.37
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TABLE 2 Tracking parameters considered for tracking accuracy optimization
Parameter Range Type Description
Feature Tracking
feature-quality [0-0.4] Float Minimum quality of corners to track

(unitless)
min-feature-distance-klt [0-6] Float Minimum distance between features (in

pixels)
window-size [3-10] Integer Distance within which to search for fea-

ture in next frame (in pixels)
min-tracking-error [0.01-0.3] Float Minimum error to reach to stop optical

flow (unitless)
min-feature-time [2-10] Integer Minimum time a feature must exist to be

saved (in frames)
Feature Grouping
mm-connection-distance [1.5-3] Float Distance to connect features into objects

(in world distance unit (m))
mm-segmentation-distance [1-3] Float Segmentation distance (in world distance

unit (m))
min-nfeatures-group [2-4] Float Minimum number of features per frame

to generate a road user

The metric of tracking performance, or fitness function of the genetic algorithm, is the1
MOTA as described in (11). It is the most common metric for tracking accuracy, i.e. to evaluate2
the whole trajectory and not just detections in each frame, used in computer vision. MOTA is3
basically the ratio of the number of correct detections of each object over the number of frames in4
which the object appears (in the ground truth):5

MOTA = 1−
∑

t(mt + fpt +mmet)∑
t gt

where mt, fpt and mmet are respectively the number of misses, over detections (false6
positives), and mismatches for frame t. These depend on matching the trajectories produced by7
the tracker to the ground truth. In this work, a road user is considered to be tracked in a frame if8
its centroid is within a given distance in world space from the ground truth bounding box centre.9
Since there may be multiple matches, the Hungarian algorithm is used to associate uniquely the10
ground truth and tracker output so that over detections (more than one trajectory for the same road11
user) can be counted. The tracking results depend on these choices and a 5 m distance threshold12
is used as it is approximately the length of a passenger vehicle. The complementary performance13
measure of MOTP is reported in the results. It is the average distance between the ground truth14
and road user trajectories (11). This is particularly important for traffic variables such as time and15
distance headway, and safety analysis based on the proximity in time and space of interacting road16
users as measured for example by the time to collision indicator (7).17

Once the genetic algorithm finds a local maximum, the optimized or calibrated tracking18
parameters can be applied to the other video sequences to determine the performance of the track-19
ing parameters under different conditions. The relationship between the tracking parameters and20
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MOTA is evaluated using Spearman’s Rank Correlation Coefficient ρ, calculated as:1

ρ = 1− 6
∑
d2i

n(n2 − 1)

where di is the difference between the ranks xi and yi for each corresponding MOTA and2
tracking parameter values in a sample of size n. The coefficient ρ varies between -1 and +1 when3
the variables are perfectly correlated.4

The road user trajectories obtained with the calibrated tracking parameters are analyzed to5
generate traffic variables. The objective is to identify the relationship of different tracking perfor-6
mance, measured by MOTA, with the traffic variables including traffic flow and spot speeds.7

Over-fitting and Transferability8
One of the risks in optimization is that the parameters may be very specific to the video sequence9
used for optimization. The tracking performance on this video sequence may not be achieved when10
applied to other video sequences and should not be considered as representing general performance11
if applied to any other video sequence, even collected in the exact same conditions since traffic12
will be different. To determine whether tracking parameters optimized for a specific sequence are13
universally applicable, the performance of the results is examined for each camera view with the14
following comparisons:15

• The analysis area is split into a close section and a far section (see an example in FIG-16
URE 2): optimization is done in the whole analysis zone and the MOTA is reported for17
both zones independently.18

• The ground truth is split into two 5-min sequences: optimization is done for the first19
5 min and reported for each 5-min sequence.20

• The same camera is used on two different sites at a similar height and angle (sequences21
S1S and S2).22

• The same camera view is used in both winter conditions and summer conditions (se-23
quences S1S ans S1W).24

• The same IP-camera is used at two different resolutions: 800x600 and 1280x1024 (se-25
quences S1S ans S3V1).26

• The same site is used for two different cameras, an IP and a GoPro camera (sequences27
S3V1 and S3V2).28

Transferability is thus verified by applying each set of optimized tracking parameters to29
each of the other annotated sequences. The full ten minute annotated videos are used to calculate30
the MOTA, which are then compared to the optimized tracking performance and reported also as31
a percentage of the maximum MOTA. This is done to avoid potential bias from the site selection32
and vehicle composition, which may lower the MOTA result compared to other cameras, despite33
having similar relative tracking performance results.34



Morse, St-Aubin, Miranda-Moreno and Saunier 11

EXPERIMENTAL RESULTS1
The Relationship of Tracking Accuracy with Traffic Data2
In the first phase of optimization, the genetic algorithm was run for the full length of each 10-min3
video sequence. The population size is set to 20 individuals, using a minimum selection of 20 %4
of the fitness function, a crossover rate of 60 % of individuals, and a mutation rate of 5 % (of indi-5
viduals). These parameters were based off of typical values and tweaked to account for a relatively6
low number of alleles (number of parameters being optimized) and the high cost of computing the7
fitness function. All the sets of tracking parameters (individuals) and the corresponding trajecto-8
ries generated by the tracker are saved over the whole optimization process: the traffic counts and9
average speeds at the entrance and exit of each lane of the analysis zone are extracted and analyzed10
with respect to tracking accuracy (see FIGURE 3).11

As expected, there is a strong correlation between MOTA and the number of road users12
tracked given the definition of MOTA: if tracking errors are uniformly spread over the analysis13
zone, since MOTA represents the average percentage of correctly tracked road user instants, one14
can expect that the resulting counts will be around the true number of road users multiplied by15
MOTA. MOTA seems therefore to be a good indicator of total counting accuracy. On the other16
hand, average spot speeds seem relatively insensitive to MOTA, except for lower values of MOTA17
which tend to be associated with a larger range of average extracted spot speed, especially for S1W.18
This can be related to the counts: lower MOTA values generate low counts and the spot speeds are19
a small random sample of all road users with high variability. As the performance increases in20
lanes that have a significant number of vehicles, the average spot speeds converge (one can still21
observe a lot of variability independently of MOTA for lane 1 at the exit).22

The two higher resolution camera views (S3V1 and S3V2) had very few results of poor23
performance. This suggests a lower sensitivity to the tracking parameters chosen for optimization.24
S1W presents a special case where only 49 % of generation individuals had any tracked objects.25
These two cases are discussed in subsequent sections.26

Correlation of Tracking Parameters with Tracking Accuracy27
All the tested tracking parameters in the optimization history with their associated MOTA are used28
to compute Spearman’s rank correlation coefficient (see results by parameter and camera view in29
FIGURE 4). The correlations therefore depend on these specific optimization runs, the number30
of which is different for each camera view since the processing time for tracking took up to 12 h31
for the 20 individuals evaluated at each generation of the genetic algorithm. The higher resolution32
camera also had few data points for lower MOTA values as seen in FIGURE 3.33

The tracking performance of the lower resolution IP camera was largely dependent on34
feature-quality. In fact, in the case of S1W recorded in winter, a MOTA above 0.150 was35
not found unless feature-quality was below 0.10 and the best performance came from a36
feature-quality of approximately 0.01. This suggests that these video sequences recorded37
in the winter should be calibrated separately from the other ones since its most important pa-38
rameter is directly related to computation time (lower feature-quality will generate more39
features that take more time to be grouped). The range of feature-quality should also be40
adjusted for such a calibration. Another point of mention is that the GoPro camera had most41
of the lowest correlation coefficients with respect to each parameter. The implication is that the42
high resolution seems to be less sensitive to the choice of tracking parameters to achieve good43
performance. The third observation is that certain parameters such as min-tracking-error44
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FIGURE 3 Counts (left column) and average speeds (right column) measured at the entrance
and exits of the merging zone for each video sequence (corresponding to each row)
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FIGURE 4 Spearman’s rank correlation coefficient by tracking parameter and site com-
puted over the calibration history

and min-feature-time could be eliminated from the optimization process due to the lack of1
correlation for all camera views.2

Over-fitting Analysis3
The second phase of the validation process was to evaluate the performance of the optimized4
parameters compared to the default parameters. The genetic algorithm was run for the first 5 min5
of each video file for between 10 and 30 generations over the course of one to three days depending6
on the site. TABLE 3 presents a summary of the optimal parameters found for each camera view.7
Some parameters such as min-feature-distance-klt, mm-connection-distance8
and min- tracking-error seem to have converged towards similar values on three of the9
camera views. However, it is apparent that in most cases the optimal solution is unique.10

The tracking performance obtained by the genetic algorithm is presented in TABLE 4 as11
a comparison between the performance for the default tracking parameters and the parameters12
optimized on the first 5 min of each camera view. Both the MOTA and MOTP values for every case13
are improved, in some cases by a large margin. The results for winter (S1W) in particular express14
the need for optimization as the MOTA did not reach over 0.05 using default parameters whereas a15
potential for a MOTA over 0.70 was found. As expected, the camera views with a lower correlation16
with the parameters, in particular S3V2, did not improve as much as the other sites. Furthermore,17
a lower MOTA did not necessarily mean that the camera cannot be properly optimized. When18
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TABLE 3 Default tracking parameters and values optimized for each camera view
Optimized for

Default S1S S1W S2 S3V1 S3V2
window size 7 9 9 6 10 3
feature quality 0.1 0.0826 0.0096 0.0812 0.1167 0.2652
min-feature-distance-klt 5 3.0126 3.1374 3.5496 3.5424 2.8645
min-tracking-error 0.3 0.1856 0.1038 0.1833 0.1847 0.0284
min-feature-time 20 8 10 9 5 3
mm-connection-distance 3.75 2.7480 2.0005 2.6881 2.7306 1.8520
mm-segmentation-distance 1.5 2.4560 2.1804 1.8151 2.1762 1.2823
min-nfeatures-group 3 2.7231 3.4020 3.1675 2.5111 2.3042

comparing S1S and S2, which have similar physical properties and identical cameras, there is a1
noteworthy difference (0.909 and 0.812 respectively). The source of the difference could be due to2
the lower number of vehicles in S2 or a difference in traffic compositions (i.e. a higher volume of3
trucks).4

TABLE 4 Tracking performance (MOTA and MOTP) for the different camera views for the
default tracking parameters and the parameters optimized on the first 5 min of each camera
view on the same sequence, as well as the last 5 min, the whole 10 min, the closer half and
further half of the analysis zone separately

S1S S1W S2 S3V1 S3V2
MOTA MOTP MOTA MOTP MOTA MOTP MOTA MOTP MOTA MOTP

Default parameters
First 5 min 0.746 1.642 0.043 2.666 0.647 1.251 0.754 1.149 0.820 1.101
Last 5 min 0.679 1.490 0.031 3.524 0.719 1.009 0.761 1.074 0.670 1.612
Full 10 min 0.719 1.581 0.041 3.001 0.703 1.100 0.760 1.114 0.750 1.340
Close 0.706 1.378 0.045 2.742 0.569 1.119 0.763 0.971 0.856 1.175
Far 0.632 1.819 0.029 4.594 0.700 1.092 0.700 1.230 0.634 1.519
Optimized parameters on first 5 min
First 5 min 0.909 1.233 0.708 1.974 0.812 1.019 0.855 1.000 0.851 0.736
Last 5 min 0.884 1.233 0.693 1.885 0.717 0.853 0.772 0.842 0.691 0.585
Full 10 min 0.905 1.237 0.710 1.920 0.767 0.918 0.817 0.927 0.789 0.666
Close 0.871 1.174 0.674 1.979 0.617 0.856 0.784 0.857 0.875 0.713
Far 0.821 1.298 0.608 1.971 0.760 0.978 0.738 1.040 0.680 0.554

In the same table, the parameters optimized by the genetic algorithm were evaluated on5
different conditions for each camera view:6

• a validation sample made up by the last 5 min of each camera view7

• the whole 10 min of annotated video8

• the closer half of the analysis zone (whole 10 min) (see FIGURE 2)9

• the further half of the analysis zone (whole 10 min)10
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This permits investigating over-fitting. It is found that, while the improvement were always1
greater for the first 5 min on which the parameters were optimized, there was a systematic positive2
upward trend in performance, both for MOTA and MOTP, on the validation sample (last 5 min)3
and the other conditions. Yet improvement on the validation sample vary widely between S1S and4
S1W and the other camera views where they are quite small. It can be seen that MOTA for the5
far analysis zone is in general worse than for the closer zone as expected, except for S2. It should6
be noted that the MOTA of the close and far zones do not always average to the MOTA for the7
full analysis zone. This is explained by the small differences created at the borders of the analysis8
zones as vehicles enter and leave and trajectories are split between the sub-zones.9

Transferability of Optimized Parameters Across Camera Views10
The third phase applies the parameters optimized on the first 5 min of each camera view on all an-11
notated videos for the whole 10 min: the performance results are presented for MOTA in TABLE 5.12
The MOTA was compared both as an absolute value as well as a percentage of the known highest13
MOTA to investigate the relative gains of each camera view (the best MOTA for each camera view14
is the one obtained with the parameters optimized for itself as expected). The winter conditions15
(S1W) proved to be the most difficult ones, where tracking parameters optimized on a different16
camera view always produce very few road user trajectories, leading to MOTA values far outside17
the acceptable range. Inversely, using the tracking parameters optimized for S1W resulted in worse18
tracking performance than obtained for the default parameters for two camera views. This suggests19
the need for separate tracking parameters for different weather conditions. However, in the case of20
good weather conditions, a result of around 90 % of the best known MOTA can be expected from21
any set of optimized parameters.22

TABLE 5 Tracking performance for default and optimized parameters for all camera views:
each column corresponds to the camera view on which the parameters were optimized (first
5 min) while each row corresponds to the camera view (full 10 min) for which the perfor-
mance is reported for the parameters

Parameters optimized for

Site Default S1S S1W S2 S3V1 S3V2

S1S 0.719 0.905 0.821 0.818 0.841 0.823

S1W 0.041 0.115 0.710 0.078 0.044 0.051

S2 0.703 0.740 0.623 0.767 0.746 0.718

S3V1 0.760 0.797 0.778 0.793 0.817 0.799

S3V2 0.750 0.705 0.737 0.776 0.700 0.789

  Parameters optimized for 

Site Default S1S S1W S2 S3V1 S3V2 

S1S 79.50% 100.00% 90.77% 90.39% 93.01% 91.01% 

S1W 5.79% 16.14% 100.00% 10.97% 6.26% 7.16% 

S2 91.71% 96.55% 81.19% 100.00% 97.27% 93.69% 

S3V1 92.94% 97.51% 95.21% 97.03% 100.00% 97.77% 

S3V2 95.17% 89.41% 93.51% 98.43% 88.79% 100.00% 
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CONCLUSION1
The first finding of this paper is the strong correlation between traffic counts and the measure of2
tracking performance (MOTA), as well as a correlation as strong as -0.879 between MOTA and3
certain tracking parameters (using Spearman’s rank correlation). The second finding deals with4
the question of over-fitting. While the results, as expected, are found to be optimal on the sequence5
on which the calibration was done, there were improvements in all conditions, in separate parts6
of the video and on both the analysis sub-zones close and far from the camera. The third finding7
covers the transferability of tracking parameters optimized for a specific camera view on the others.8
Parameters for summer sequences are demonstratively not applicable to winter conditions as results9
for the winter sequence did not surpass a MOTA of 0.150 unless specifically optimized for, whereas10
the high resolution camera is shown to be very tolerant to different parameters.11

The genetic algorithm used with manually annotated video sequences shows that there is12
room for noticeable improvements over the default tracking parameters. Considering the strong13
impact that winter conditions had on the performance results, a logical next step would be the14
evaluation of other meteorological conditions such as precipitation, low visibility (fog), nighttime15
and high winds (affecting camera stability). High resolution cameras have fewer issues which the16
choice of parameters and should be studied further to determine the effects of these conditions17
compared to the effects on lower resolution cameras. This study relied on video data recorded only18
at roundabouts: more sites, with different geometries and traffic conditions, and annotations are19
needed to extend and further generalize this work.20

Additional work is also needed on the relationship between tracking accuracy and other21
types of traffic data that could not be extracted in sufficient quantities from ten minutes of video22
to provide meaningful results: gap time, time-to-collision and road user interactions are examples23
of such data relevant for safety. Different types of optimization algorithms, e.g. the evolutionary24
algorithm used in (12), and performance metrics could also be evaluated based on both compu-25
tation time and reliability of the solutions. The accuracy of traffic data (counts and speeds) was26
not measured in this paper and its relationship with tracking accuracy should be investigated. In27
particular, can better accuracy for traffic variables be obtained by optimizing it directly rather than28
by optimizing tracking accuracy?29

The real world application is to develop a reliable single or dynamic set of tracking param-30
eters that could be calibrated and applied to a network of both fixed and mobile cameras to be used31
under all conditions. Combined with automated trajectory analysis tools, the wide-scale deploy-32
ment of automatically calibrated video analysis algorithms would provide researchers with very33
large datasets of traffic data for a better understanding and management of transportation systems.34
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