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Automated Road Safety Analysis Using Video Data 
 

Nicolas Saunier, Tarek Sayed 
 
Abstract: Traffic safety analysis has often been undertaken using historical collision data. 
However, there are well-recognized availability and quality problems associated with collision 
data. In addition, the use of collision records for safety analysis is reactive: a significant number 
of collisions has to be recorded before action is taken. Therefore, the observation of traffic 
conflicts has been advocated as a complementary approach to analyze traffic safety. However, 
incomplete conceptualization and the cost of training observers and collecting conflict data have 
been factors inhibiting extensive application of the technique. The goal of this research is to 
develop a method for automated road safety analysis using video sensors in order to address the 
problem of a dependency on the deteriorating collision data. The method will automate the 
extraction of traffic conflicts from video sensors data. This should address the main 
shortcomings of the traffic conflict technique. This paper describes a comprehensive system for 
traffic conflict detection in video data. The system is composed of a feature-based vehicle 
tracking algorithm adapted for intersections and a traffic conflict detection method based on the 
clustering of vehicle trajectories. The clustering uses a K-means approach with Hidden Markov 
Models and a simple heuristic to find the number of clusters automatically. Traffic conflicts can 
then be detected by identifying and adapting pairs of models of conflicting trajectories. The 
technique is demonstrated on real world video sequences of traffic conflicts. 
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INTRODUCTION  
Given the magnitude of the traffic safety problem, road authorities around the world are 

working hard to improve road safety in an effort to reduce the economic and societal costs 
associated with traffic collisions. Traffic safety analysis has been traditionally undertaken using 
historical collision data. However, there are well-recognized availability and quality problems 
associated with collision data. In many jurisdictions, the quantity and quality of collision data has 
been degrading for several years. In addition, the use of collision records for safety analysis is a 
reactive approach: a significant number of collisions has to be recorded before action is taken. 
Because of these problems, the observation of traffic conflicts has been advocated as an 
alternative or complementary approach to analyze traffic safety from a broader perspective than 
collision statistics alone (1,2,3,4). The Traffic Conflict Technique involves observing and 
evaluating the frequency and severity of traffic conflicts at an intersection by a team of trained 
observers. Traffic conflicts are more frequent than collisions, and their study can give detailed 
information about safety. The technique therefore provides a means for the analysts to 
immediately observe and evaluate unsafe driving maneuvers at an intersection. However, 
incomplete conceptualization and the cost of training observers and collecting conflict data have 
been factors inhibiting extensive application of the technique. Therefore, the successful 
automation of extracting conflicts from video sensors data using computer vision techniques 
appears to have practical benefits for traffic safety analysis.  

This research aims at implementing a complete system to interpret vehicle interactions 
and detect traffic conflicts in real world video data (provided by one stationary camera). This 
system should be generic, robust and low-cost, for regular use by traffic safety practitioners. The 
emphasis is on intersections which are crucial parts of the road networks for safety. This paper 
presents an approach to build such a traffic conflict detection system, and demonstrates its 
feasibility using experimental data.  

PREVIOUS WORK 

Traffic Conflicts 
The concept of traffic conflicts was first proposed by Perkins and Harris (5). As an 

alternative to collision data, which in many cases are scarce, unreliable, or unsatisfactory. Their 
objective was to define traffic events or incidences that occur frequently, can be clearly 
observed, and are related to collisions. An internationally accepted definition of a traffic conflict 
is “an observable situation in which two or more road users approach each other in space and 
time for such an extent that there is a risk of collision if their movements remain unchanged.” 
(6). A traffic conflict between two road users includes two components: a collision course and an 
emergency evasive action. Deciding if two road users are on a collision course depends on the 
extrapolation hypotheses. Common hypotheses are extrapolation with constant direction and 
speed. A traffic conflict is an interaction, defined as an observational situation in which two or 
more vehicles are close enough in space and time. 

The relationship between traffic conflicts and collisions need to be established to use 
traffic conflicts as surrogates to collisions for safety analysis. Many researchers (7,8), assume 
that all interactions can be ranked in a safety hierarchy, with collisions at the top. The 
interactions located next to the collisions in the safety hierarchy are often called quasi-collisions. 
The interactions can thus be recursively ranked in the safety hierarchy. For this concept to be 
operational, the safety hierarchy is transferred into measurable parameters based on certain 

1 

TRB 2007 Annual Meeting CD-ROM Paper revised from original submittal.



 

assumptions. For each interaction in the hierarchy, a severity can be estimated, matching its 
location in the hierarchy, i.e. measuring the proximity to the potential occurrence of a collision, 
which is related to the probability of collision. The main elements that constitute the severity are 
the distance in space and time between the drivers involved and their evasive action(s). Many 
severity indicators were developed (8,9), e.g. the Time-To-Collision (TTC), defined for two road 
users on a collision course as the extrapolated time for the collision to occur. The similarity 
between collisions and quasi-collisions is "striking" enough (9) to allow their use for safety 
diagnosis (3). Even if the relationship between traffic conflicts and collisions is not simple (1,3), 
traffic conflict techniques (TCTs) offer a powerful framework to investigate the safety of a 
location and provide detailed safety information, in the same way as costly in-depth collision 
analysis, since the processes are very similar.  

Vision-Based Traffic Conflict Detection 
The vision-based monitoring of road networks is a complex task. Monitoring 

intersections faces more problems than highways. These problems are related to the highly 
variable structure of the intersections, the presence of multiple flows of the vehicles with turning 
movements, the mixed traffic that ranges from pedestrians to trucks and vehicles that stop at 
traffic lights. Specific classification and occlusion management techniques are required. 
Common problems to highways and intersections include global illumination variations, multiple 
object tracking and shadow handling.  

Despite the potential benefits of automated traffic safety analysis based on video sensors, 
limited computer vision research is directly applied to road safety, and especially the detection of 
traffic conflicts (10,11,12,13). Maurin et al. (14) state that "despite significant advances in traffic 
sensors and algorithms, modern monitoring systems cannot effectively handle busy 
intersections". Such a system requires a high level understanding of the scene and is traditionally 
composed of two modules (see Figure 1):  

1. a video processing module for vehicle detection and tracking, 
2. an interpretation module for traffic conflicts detection. 
The input to the system is a stream of images. The detail level of the traffic conflict 

detection can vary. Detecting traffic conflicts, with details about the involved vehicles and their 
trajectories, is a difficult task and may not be achieved with enough accuracy for practical use. 
An alternative system can yield the sequences that contain traffic conflicts. Such a system is 
successful if all traffic conflicts are detected and the number of false detection is kept to the 
minimum. This system would act as a filter of video data that would summarize hours of video 
data in minutes containing the relevant incidents for further human review and analysis.  

Vehicle Tracking 
The goal of the tracking process is to maintain the identity of a moving object over the 

sequence of frames. Object tracking methods are usually classified into at least four groups 
(12,15). Model-based tracking exploits the a priori knowledge of typical objects in a given scene, 
which is matched to the image data. Region/blob-based tracking identifies connected regions of 
the image, blobs, associated with each vehicle. Regions are often obtained through background 
subtraction and then tracked over time. Contour-based tracking has a representation of the 
contour of a moving object that is updated dynamically. These first three methods have 
limitations. Model-based tracking requires models for all types of moving objects, and is 
computationally intensive. Region- and contour-based tracking don't cope well with congested 
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traffic conditions involving partial occlusion. Many implementations of these methods also 
require a special initialization phase, sometimes manual.  

Feature-based tracking abandons the idea of tracking objects as a whole, but instead 
tracks features such as distinguishable points or lines on the object. This is achieved through well 
known methods such as the Kanade-Lucas-Tomasi Feature Tracker. Since a vehicle can have 
multiple features, it must be determined what set of features belong to the same vehicle. The 
features are grouped using spatial proximity and common motion. Feature-based tracking 
algorithms have distinct advantages over other methods: they are robust to partial occlusions, 
they don't require any initialization, and can adapt successfully and rapidly to variable lighting 
conditions, allowing real-time processing and tracking of multiple objects in dense traffic. 
However, feature-based tracking may have difficulty in delineating occluding objects with 
similar motion vectors  

Traffic Conflict Detection 
Traffic conflict detection based on video sensors can be achieved with various methods. 

One would first try the direct approach of extrapolating vehicle trajectories. The approach 
described by Atev et al. (13) detects pairs of vehicles that would collide if they maintain their 
current speeds and directions. It employs a region-based tracking method with background 
subtraction, and a novel method for three-dimensional vehicle size estimation. Tracking and size 
estimation appear to be accurate, but there is no validation of the collision prediction results. 
However, this type of direct approach is likely to have unreliable performance because the 
tracking data are imperfect and noisy. Such explicit systems, using rules adjusted by trial and 
error, rarely provide generic and robust solutions, especially when the environment and the event 
patterns change. This would for example mean to redevelop the system for every intersection. A 
better model may be learnt from observation.  

There are two approaches involving learning for traffic conflict detection: 1) supervised 
learning for interaction classification, and 2) unsupervised learning of vehicle dynamics and 
movements for prediction. The first approach casts traffic conflict detection as a binary 
classification problem between traffic conflicts and non-conflict interactions. A classifier can be 
learnt on instances of each class. Kamijo et al. (11) learn "ordinary" traffic vehicle interactions 
with Hidden Markov Models (HMM). An HMM is learnt for each type of activity that needs to 
be recognized. The results are very limited as there are very few training instances and the 
system is tested only on this training set.  

The second approach aims at improving the movement extrapolation of the simple 
extrapolation approach by learning the recurrent vehicle movements. Hu et al. (10) use Self-
Organizing Maps (SOM) to quantify the vehicle observations and predict the vehicle 
movements. They present a method that computes the probability for two vehicles to collide, 
which is then applied to traffic accident prediction. While this work seems promising, the traffic 
accident prediction system is validated only on two accident instances in a toy car experience. 
Robotics is another field that deals with movement learning and prediction, for motion planning. 
For example, Vasquez and Fraichard (16) use the statistical learning of motion patterns for the 
motion prediction of moving objects.  

Messelodi and Modena (12) describe an alternative approach based on occupation rates to 
evaluate the average probability of accident for a passing vehicle. However, there is no direct 
detection of actual events. The collision probability is computed even for isolated vehicles 
without any other interacting vehicle in the intersection.  
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THE PROPOSED APPROACH 

Tracking Vehicles in Intersections 
For all the advantages stated in the previous section, the vehicle detection and tracking 

approach used in the system presented in this paper relies on a feature-based tracking method 
that extends the method described by Beymer et al.(15) to intersections.. Instead of grouping 
features independently in each frame, Beymer et al.(15) group the whole features tracks with 
common motion, by integrating this information over as many image frames as possible. 
However, Beymer et al.(15) deal only with highways, whereas trajectories in intersections are 
more variable, feature tracks are often disrupted by occlusions and pose change. In the system 
used in this paper, no assumption is made with respect to entrance or exit regions in the scene, 
and the algorithm is modified in order to make use of partial feature tracks.  

The algorithm relies on world coordinates through the estimation of the homography 
matrix. The tracking accuracy has been measured between 84.7 % and 94.4 % on three different 
sets of sequences (see Figure 2 for examples of difficult trajectory reconstitution). Despite the 
problems in an open environment such as an intersection, the vast majority of vehicles are 
detected and their movement can be estimated with sufficient accuracy for the desired 
application, the detection of traffic conflicts. A detailed description of the tracking algorithm is 
presented in Saunier and Sayed (17).  

Trajectory Clustering  
The unsupervised learning approach is favored because it is difficult to gather sufficient 

data for training and testing the system. Traffic conflicts, although more frequent than collisions, 
are rare traffic events. On the other hand, vehicle movements can be learnt in an unsupervised 
way.  

There are three categories of strategy for the clustering of sequential data regardless 
whether the sequence elements have numerical or nominal values (18): 

1. In sequence similarity, the comparison between two sequences is viewed as a process 
to transform a given sequence into another. Many approaches with practical use follow that 
principle including the Dynamic Time Warping algorithm (DTW) widely used in speech 
recognition tasks and the Longest Common Subsequence model (LCSS) applied to the clustering 
of motion trajectories (19). 

2. In indirect sequence clustering, a set of features is extracted from the sequences. In 
this space, traditional vector space-based clustering algorithms can be used. However, the 
process causes loss of information and needs additional knowledge. For example, Khalid and 
Naftel (20) use the leading Fourier coefficients, which they describe as being inherently unsuited 
for the representation of highly complex trajectories.  

3. In statistical sequence clustering, statistical models like HMMs and more general 
Dynamic Bayesian Networks (DBNs) are built to describe the dynamics of each group of 
sequences. Observations are defined to be similar in terms of common similarity to a model, 
expressed through the likelihood function )( ModelnObservatioP . 

Clustering trajectories reconstituted from video data is difficult as the trajectories are 
complex, noisy and often incomplete. Indirect sequence clustering is inadequate. Statistical 
sequence clustering is naturally suited to handle variable length trajectories. Among the sequence 
similarity approaches, methods based on the Euclidean distance are too simple to accommodate 
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noisy and partial trajectories, although it is used by Vasquez and Fraichard (16) for a special 
indoor tracking application where all trajectories start from the same area.  

Some studies have already explored statistical sequence clustering, mainly using HMMs. 
Most adopt a K-means formulation which is extended with soft memberships and applied to 
video data by Alon et al. (21). In HMM-based clustering, a set of HMMs, one HMM per cluster, 
is learnt iteratively. At each iteration, instances are assigned to the HMM that maximizes its 
probability or likelihood, and a HMM is trained on each cluster (see Figure 3). A distinct 
advantage is the availability of a HMM per cluster, that gives a simple and fast way to match a 
new trajectory in the detection phase.  

The Proposed HMM-based Clustering Algorithm 
The approach used in this paper, adopts the K-means formulation, adding a simple 

heuristics to determine the number of clusters. The HMM notation is first defined. For a detailed 
overview of HMMs, readers are directed to (Rabiner 1989). A complete specification of a first-
order HMM with M states  and a simple Gaussian observation density is formally 
given by: 

],,,[ 21 MSSS K

• a set of prior probabilities }{ iπ=Π  where MiSqP ii ≤≤== 1),( 1π .  
• a set of state transition probabilities  where }{ , jihH =

MjiSqSqPh itjtji ≤≤=== + ,1),( 1, .  
• a set of output distributions  where }{ jbB =

MjONSqoOPob jjtjttttj ≤≤Σ==== 1,),()()( ,µ , where jµ  and jΣ  are the mean and 
covariance of the Gaussian of state . jS

where  and  are respectively the state and observation at time t. It is common to 
denote a mixture of K HMMs by 

tq tO
KmBH mmmm ≤≤Π= 1),,,(λ . Algorithms exist to:  

• compute the probability of observing a sequence, given a model.  
• find the state sequence that maximizes the probability of the given sequence, when 

the model is known (the Viterbi algorithm).  
• induce the HMM that maximizes (locally) the probability of the given sequence (the 

Baum-Welch algorithm, an expectation-maximization (EM) algorithm). 
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Algorithm 1: Algorithm for the clustering of variable length sequences with HMMs. 
Input: Let KmBH mmmm ≤≤Π= 1),,,(λ  be a mixture of K HMMs 

Let Ki be the initial number of clusters 
Let  be a set of N observations, where  is a sequence of 

vector observations 
NiOO i ≤≤= 1},{ iO

iT
Let  be the minimum number of observations assigned to a cluster to keep 
and retrain it 

minN

Let n be the maximum number of iterations without a change in the number of 
clusters 

Output: A mixture of Kf  HMMs. 
begin 

Initialize randomly K= Ki HMMs mλ , with a simple Gaussian observation density 
adjusted to the observation set O 

1=i  
while do  ni≤

Assign each observation  to the HMMs iO
imλ  that maximizes )( m

iOP λ  
Let  be the set of  observations assigned to 

m
Oλ mN mλ  

Keep only the HMMs mλ  such that , reset and train minNNm ≥ mλ  with 
 

m
Oλ

if No HMM was discarded then 
11+=i  

end 
                                                                                                                             

The HMMs are initialized in a standard way: uniform priors and transition matrices are 
used, the means and variances of the Gaussian observation density are estimated using K-means 
on the observation data. The number of clusters K is automatically adjusted through the use of a 
minimum number of assigned observations per cluster, in order to ensure a minimum reliability 
of the parameters of the HMM. The HMMs that do not satisfy this condition are discarded. The 
initial number  of HMMs should be larger than the “natural” number of clusters of the data. 
The learning process stops when the number of clusters doesn't change for a number n of 
iterations. A major drawback of HMM-based clustering is the instability of the resulting 
clustering, as the initialization of the HMMs is random.  

iK

Detecting Traffic Conflicts 
Vehicles involved in traffic conflicts are on a collision course, i.e. vehicles will collide if 

their movements continue unchanged. To decide if two vehicles are on a collision course, their 
positions, speeds and movement directions are required. That is why velocity (speed and 
direction vector) estimations are included in the trajectories descriptions, whereas most other 
research uses the actual vehicle displacements. The clustered observations are therefore 
sequences of four-dimensions vectors, composed of the vehicle coordinates  and velocity 

 at each time step. The estimated size of the vehicles should be also useful, but it didn't 
),( yx

),( yx ss
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improve the results in the experiments. Since the trajectories obtained through the vehicle 
tracking algorithm are noisy, they are smoothed using a moving average filter (21). 

Even in the unsupervised approach, traffic conflict detection requires some supervision. 
Knowing typical vehicle movements, a new trajectory can be matched against them, and the best 
matches used for extrapolation. One approach is to combine the other probable simultaneous 
vehicle movements, and to estimate a collision probability. As experimented by Hu et al. (10), 
this measure is expected to reach values for traffic conflicts that are significantly different from 
normal interactions.  

This paper presents a more simple approach introduced by Saunier and Sayed (22) that 
identifies the conjunction of movements that may lead to collisions. For that purpose, HMMs 
learnt on each obtained clusters are adapted into more specific models of conflicting trajectories 
by using a few traffic conflict instances. The resulting "conflicting clusters" are better models of 
conflicting trajectories than what could be learnt with the available training instances. In speech 
recognition, it is a traditional method to adapt general HMM to each speaker. This was used 
recently for unusual event detection by Zhang et al. (23). Readers are directed to Saunier and 
Sayed (22) for the HMM adaptation formulas. A weighting factor α controls the balance between 
the original model and the new estimates on the trajectories involved in the training traffic 
conflicts. Both the original model and the adapted model are kept in the set of HMMs used for 
detection. 

When adapting the HMMs, the learning includes the memorization of the pairs of models 
to which the pairs of trajectories involved in the training traffic conflict instances were assigned. 
Consequently, the learning phase, before any detection, yields a set of HMMs and pairs of 
conflicting models. A traffic conflict is detected when two simultaneous trajectories match one 
of the memorized pairs of conflicting HMMs. The detection process proceeds as follows:  

1. Vehicles are tracked. 
2. If two vehicles are close enough (threshold on their distance) and nearing each other 

(their distance decreases), they are considered to be in interaction. 
3. Each interacting vehicle trajectory is assigned to a HMM, say A and B. 
4. If the two HMMs A and B of both interacting trajectories were both memorized as 

conflicting, a traffic conflict between these two vehicles is detected.  

EXPERIMENTAL RESULTS 
The evaluation is based on a set of ten traffic sequences on the same location (figure 4), 

initially used for the training of traffic conflict observers in the 1980s. Their length ranges from 
10 seconds to 60 seconds. Despite the videotape aging and the approximate alignment of the 
field of view between sequences, this data was readily available and could be digitized to test the 
method. The tracking results on these sequences are reported by Saunier and Sayed (17) to be 
86 %.  

All K HMMs of a mixture have the same structure parameter values (number of states, 
simple Gaussian observation density), which are tuned for each cluster of observations with the 
algorithm. The trajectories are measured in the world coordinates and are smoothed with an 
average moving filter with support 5. HMMs are clustered with a set of 560 trajectories from 
eight traffic sequences. The trajectories of two sequences are not used for learning since there are 
many detection and tracking errors caused by camera jitter. They are however used to test the 
generalization ability of the method. The set is large and representative of all trajectories, but 
small enough to maintain reasonable computation times. The parameters n (number of iterations 
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once the number of HMMs doesn't change anymore) and  (minimum size of the clusters) 
are tuned by trial and error respectively to 3 and 5. 

minN

Figure 5 shows that for different settings of the number of states M for all HMMs, the 
final number Kf of HMMs increases as a function of the initial number Ki. When Ki  is superior 
to a certain value, Kf increases very slowly, and this value can be seen as the "natural" number of 
clusters to describe the set of trajectories. A value of M=3 states seems a good tradeoff for 
accurate and fast learning. An observation of the learnt HMMs indicates that the 3 states (the 
means of the Gaussian observation density) often correspond to the approach of the intersection, 
the conflict zone and the leaving of the intersection. Besides, the stopping criterion of the 
algorithm is quickly reached, most discarding of HMMs occurring at the first iteration of the 
algorithm, followed by n more iterations. 

An example of the result of the clustering algorithm is presented in the Figure 6. The 
figures display the trajectories assigned to each cluster. The main vehicle streams are represented 
sometimes mixed in the same cluster. Most adapted HMMs have fewer assigned trajectories than 
non-adapted models. However, 66 trajectories are assigned to the largest cluster. The 
examination of these clusters suggests a plausible division of the trajectories space, covering 
different paths with differing velocities.  

The training program highlights nine traffic conflicts in nine sequences (there is no traffic 
conflict in the last sequence). Among these, only five traffic conflicts are used as training 
instances. Another one (in the fourth sequence) is not used because the vehicles are not detected 
anymore at the time they are really in conflict, and the rest of the traffic conflicts involves 
pedestrians and cyclists that are very difficult to distinguish on account of the quality of the 
videotape. Result validation is difficult as there is no ground truth, apart from the traffic conflicts 
used for training, and this relies only on observers’ judgment, not on objective measures such as 
the Time To Collision (TTC).  

The detection results are presented in terms of interactions. They are computed on all the 
available data, the trajectories detected in the ten sequences. This is a two-class classification 
problem, traffic conflicts against non-conflict interactions, with two types of errors: false alarms 
(FA), when the system accepts a non-conflict interaction, and false rejections (FR), when the 
system rejects a traffic conflict. Designed as the system is, the traffic conflicts used to identify 
and adapt the HMMs will always be detected. It is sometimes difficult to decide upon the other 
detected traffic conflicts: some are clearly FA, but some could be real traffic conflicts, and are 
counted in their own category. When these uncertain traffic conflicts are not detected, no FR is 
counted. This allows a more flexible result evaluation. 

1501 interactions are detected. The numbers are quite high because the tracking is 
sometimes lost, which increases the number of trajectories measured, and therefore the number 
of interactions. This is also why the five training traffic conflicts instances are detected as ten 
interactions. The tradeoff between adaptation and generalization is illustrated by studying the 
performance of a mixture of HMMs, with different levels of adaptation, controlled by the 
weighting factor α. In Table 1, the detection results are presented for the mixture of HMMs for 
which the clustered trajectories are displayed in Figure 6. The most striking is the improvement 
of results between the non-adapted HMMs and the smallest level of adaptation (α=0.05). It must 
be noted that most FA are caused by detection and tracking errors in one of the test traffic 
sequences, and not by the traffic conflict detection method. The system can generalize as there 
are no FA for all levels of adaptation on the other test sequence without traffic conflicts.  
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There seems to be a good tradeoff between adaptation and generalization for 
α=0.15 or 0.2. As the adaptation is more important, the system becomes very specific to the 
training traffic conflicts instances, and is not able anymore to generalize to unknown data, as it is 
showed by the overall decrease of the number of uncertain traffic conflicts. For example, the 
traffic conflict of sequence 4 is detected for the non-adapted HMMs and for 15.0≤α , but not 
anymore when the adaptation increases. Such overfitting should be avoided.  

It should be noted that the limited data available for testing make this evaluation difficult, 
but these results demonstrate the possibility of detecting traffic conflicts among all interactions 
with the presented method, and even generalize to some unseen data. The system can be made 
more or less specific according to the application.  

CONCLUSIONS AND FURTHER RESEARCH 
This paper shows the feasibility of automated traffic conflict detection based on video 

sensors. A complete system is presented, including an improved feature-based tracking method 
and a first traffic conflict detection approach using the clustering of trajectories with HMMs in 
an unsupervised way, their adaptation and identification for further detection. First results on 
limited real data show the potential of this work. Further work includes the collection of more 
data for testing. The use of simulated traffic data is contemplated to evaluate on a varied set of 
controlled situations how generic the technique is. Improvements of the technique can be made 
at different levels. K-means clustering is only guaranteed to converge to a local optimum, and 
the results are somewhat dependent on the initialization of the algorithm. Other clustering 
techniques based on the sequence similarity approach (LCSS), possibly in combination with 
HMM-based clustering, can make the process more robust. Collision probability estimation 
methods similar to (Hu et al. 2004) will also be tried as it can provide severity measures such as 
the TTC and avoids casting traffic conflict detection in a strict classification framework, where 
finding a boundary between traffic conflicts and non-conflict interactions can only be arbitrary 

Currently, a detailed validation plan is being developed to test the method presented in 
this paper. The first component of the validation will focus on comparing the conflicts identified 
by this method and human experts’ identification and ranking of conflicts. As well, the validation 
will test the ability of using the extracted conflicts to produce statistically-significant differences 
in the safety for different intersection designs. The second component will compare the 
predictive safety performance capabilities of using the extracted conflicts with actual collision 
experience at signalized intersections. 
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TABLE 1  Detection results as a function of the weighting factor α, which controls the 
adaptation of the HMMs to the traffic conflict instances.  

 Number of Traffic Conflicts 
α Correctly Detected Uncertain False Alarms 

No adaptation 10 17 38 
0.05 10 13 6 
0.10 10 13 10 
0.15 10 12 6 
0.20 10 3 3 
0.25 10 5 2 
0.30 10 5 2 
0.35 10 4 1 
0.40 10 4 0 
0.45 10 4 0 
0.50 10 3 0 
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FIGURE 1  Generic overview of a traffic conflict detection system, composed of two 
modules. 
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FIGURE 2  Example of disrupted feature tracks that are still successfully grouped. 
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FIGURE 3  HMM-based clustering. 
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FIGURE 4  An image of the traffic sequences used for experiments. 
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FIGURE 5  The average final number Kf of HMMs, over 10 runs of the algorithm, as a 
function of the initial number Ki, for different number of states M. 
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FIGURE 6  Each image represents the trajectories assigned to each cluster (the trajectories 
assigned to adapted HMMs are displayed in the last two rows). 

19 

TRB 2007 Annual Meeting CD-ROM Paper revised from original submittal.


