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Abstract

Performance evaluation of detection and tracking methods
is a crucial issue. However, despite the efforts of the re-
search community, there is still a lack of widely adopted
methods, measures and benchmark data for this purpose.
Most contributions have embraced pixel-based method, and
do not report their results in terms of objects. The latter
requires the assignment of ground truth objects to the de-
tected objects, which can be very complex. To the authors’
knowledge, this paper is the first to describe an algorithm
for the explicit unique assignment of objects, including one-
to-one (correct) assignments, one-to-many and many-to-
one assignments (over-segmentations and over-groupings),
missed and false detections. Quantitative performance
measures are also presented, and the approach is illustrated
on a set of traffic videos recorded at two different locations.

1. Introduction
The problem of evaluating automatically the performance
of methods is critical in all fields. Assessment must be sys-
tematic and objective to enable better understanding of their
strengths and limitations, and to allow cross-comparison of
different methods. Depending on the performance mea-
sures, the task can be more or less automated. In the field
of computer vision, video surveillance is one of the most
important applications with widespread use. This work is
related to transportation applications, in particular to the de-
velopment of systems for traffic monitoring and automated
road safety analysis [10]. Such applications require not only
the detection of moving objects in each frame, but also the
tracking of moving objects in the field of view or a defined
region of interest. For performance evaluation, it is usually
easier to collect aggregated or instantaneous measures and
compare them automatically to the results of the method un-
der study, than to evaluate the object tracking performance
since it requires to assign to each other the detected objects
(detected by the method under study) and the objects manu-
ally identified, or ground truth objects. Yet, similar to [14],
we advocate that measuring the performance “in terms of
tracks rather than frames is a natural choice that is consis-

tent to the expectations of the end-users”.
There are subjective and quantitative methods to evaluate

the performance of a tracking algorithm. Since a goal of this
work is the automated comparison of tracking results, this
paper deals with the latter, which requires the annotation of
video data to create the ground truth. Or rather to create a
ground truth since there are many types, and there can be
significant variations between annotators [6]. The ground
truth may have various data representations, e.g. bounding
boxes or pixel-accurate contours, and definitions, regard-
ing e.g. the way to deal with occluded objects, groups of
objects with consistent motion like groups of pedestrians,
stationary objects, the definition of entrance and exit of the
field of view or a restricted region of interest. Since produc-
ing pixel-accurate object contours is very time-consuming,
the ground truth used in this work consists in sequences of
bounding boxes, although the approach can be adapted to
other types of ground truth.

Many approaches have been proposed for tracking per-
formance evaluation. The two important elements are: 1)
the definition of similarity between ground truth and de-
tected objects, along temporal and spatial dimensions, and
2) the way the correspondence or assignment between them
is made. The latter seems to have been overlooked in the
literature, since the assignments may be quite complex and
difficult to entangle, without a “true” or unique solution.
Many approaches assign simply each ground truth object
to the most similar detected objects. Yet, if all objects are
compared to each other, the possible assignments are

• correct assignment (one to one): one detected object is
tracked by one ground truth object,

• over-segmentation (one ground truth object to many
detected objects),

• over-grouping (many ground truth objects to one de-
tected object),

• multiple assignments (many ground truth objects to
many detected objects),

• missed detection (one ground truth object to zero de-
tected object),



• false detection (zero ground truth object to one de-
tected object).

Figure 1: Example of two correct object assignments,
ground truth object 7 to detected object 25 on the left,
ground truth object 6 to detected object 23 on the right. In
this typical case of close objects with consistent motion, a
simple unique assignment may first assign the ground truth
object 6 to the detected object 25, in which case it is very
likely that the ground truth object 7 will not be assigned to
the detected object 23, which will count respectively as one
missed detection and one false detection.

Multiple assignments are bound to happen when two or
more objects move consistently close to each other. This
may be “aggravated” by additional missed or false detec-
tions. Simple unique assignments may result in the identifi-
cation of more false and missed detections and was found to
be inadequate for our needs (See Figure 1). This work aims
at addressing these issues, i.e. not identifying more missed
and false detections than are actually generated, and to pro-
vide the users of the applications detailed results in terms of
the various possible assignments listed above, except multi-
ple assignments which are typically the merging of the cor-
rect assignments, over-segmentations and over-groupings.
The main reason for providing such detailed results is that
these various types of errors do not have the same impor-
tance for different applications (more generally, there is no
unique performance measure that suits all applications). To
our knowledge, this work is the first to present a method
to identify automatically explicitly and uniquely the one-to-
many assignments of ground truth and detected objects.

The rest of the paper is organized as follows. The next
section presents the related work. Section 3 describes a
method for the assignment of ground truth and detected ob-
jects, as well as performance measures. Section 4 illustrates
the method on video sequences, and section 5 concludes the
paper.

2. Previous Work
Performance evaluation has generated a lot of interest over
the last ten years. The best known is the Performance
Evaluation of Tracking and Surveillance (PETS)1 program,
which organizes regular workshops and provides bench-
mark datasets. Other datasets are made available by the
Context Aware Vision using Image-based Active Recogni-
tion (CAVIAR)2 and the French Video Understanding Eval-
uation (ETISEO)3 projects. Yet no standard has yet been
widely adopted. The challenges are compounded by the
lack of publicly available object tracking implementations
for comparison.

Some very recent work [6, 7] proposes more exhaus-
tive methodologies. As reported in [7], most contribu-
tions to the performance evaluation of detection and track-
ing algorithms have embraced pixel-based methods within
a receiver-operating characteristic (ROC) framework. Yet
this work deals only with frame-based performance mea-
sures. It relies on the F-measure and ROC-like analysis us-
ing precision-recall to present a comprehensive approach to
the comparison and search for the optimal operating point
of motion detection methods.

A large scale dataset and performance evaluation is pre-
sented in [6]. The objects are assigned “optimally” through
the optimized search of all possible assignments. However,
only one-to-one assignments are allowed. Two sets of per-
formance measures are defined. The work described in [3]
relies also on one-to-one assignments, although it mentions
counting track fragmentation, i.e. the number of detected
objects assigned to a ground truth object (it is nevertheless
not clear how this is done). The original contribution of this
work is the creation of synthetic video sequences for per-
formance evaluation, although one can wonder whether the
resulting videos are realistic and challenging enough.

The approaches described in [1, 8] are the closest to the
method presented in this paper. The authors of [1] iden-
tify what they call “merge error scenarios” that correspond
to over-segmentations and over-groupings. Yet, the perfor-
mance measures are counted in frames. It is the same issue
with [8]. Interestingly, this work makes use of a graph rep-
resenting the similarity relationships between objects, but
deal only with simple assignments of one-to-many objects,
removing “invalid configurations” based on the spatial con-
tinuity of object assignments.

[4] presents a two-pass assignment scheme that pro-
cesses first the ground truth objects, and may assign them to
many detected objects, then processes the detected objects,
and can assign them as well to many ground truth objects,
without taking into account the previous assignments of the

1http://www.cvg.cs.rdg.ac.uk/slides/pets.html
2http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
3http://www-sop.inria.fr/orion/ETISEO/

http://www.cvg.cs.rdg.ac.uk/slides/pets.html
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
http://www-sop.inria.fr/orion/ETISEO/


ground truth objects. Performance is reported in terms of
the number of missed and false detections. [12] is a well-
written article that presents a comprehensive set of metrics,
yet resolves to the simple independent assignment of each
ground truth object to the most similar detected object, then
of each detected object to the most similar ground truth ob-
ject, similarly to [4]. There is no illustration on experimen-
tal data. The method described in [14] can assign ground
truth objects to many detected objects, which counts as a
correct detection. However, it is not clear how the situation
in which a ground truth object is assigned to more than one
detected object is accounted for, since the detected objects
do not meet the conditions to be detected as false positives.
A ground truth objects assigned to two or more detected
objects that exist simultaneously will not be detected by
the measures of track fragmentation and ID change. Over-
groupings cannot be identified in the proposed method.

As stated in the introduction, none of the existing work
describes a method to identify explicitly and uniquely the
assignment of ground truth and detected objects.

3. The Proposed Approach
3.1. An Algorithm for Object Assignment
The goal of the method presented in this section is to assign
ground truth and detected objects. The “allowed” assign-
ments are: correct assignment, over-segmentation, over-
grouping, missed and false detections (not multiple assign-
ments). This work is applied to a feature-based detection
and tracking algorithm. Therefore, the detected objects are
the result of the grouping of feature trajectories. At each
instant, the position of a detected object is determined by a
set of feature positions that can be matched to the ground
truth bounding boxes. Nonetheless, the proposed approach
is flexible and can accommodate various formulations of
spatial matching between objects as have been proposed in
the literature. The following list introduces the notations
used in the remainder of this paper:

• GTi denotes the ith ground truth object trajectory,
GTi(t) the position and size of the bounding box at
time t.

• Dj denotes the jth detected object trajectory, Dj(t)
the positions of the group of features constituting the
object at time t.

• Nframes is the number of frames in the sequence.

• {GTi1, GTi2, ..., GTiN , Dj1, Dj2, ..., DjM} denotes a
set of N ground truth objects assigned to M de-
tected objects. The algorithm results will be either one
ground truth object assigned to any number of detected
objects (0 to M ), or a detected object assigned to any
number of ground truth object (0 to N ).

• NGT , ND, NCA, NOS , NOG, NMD and NFD

are respectively the number of ground truth ob-
jects, detected objects, correct assignments, over-
segmentations, over-groupings, missed detections and
false detections in a sequence.

• Let Time(O) by the temporal interval during which
an object O exists, let Length(I) be the length of the
temporal interval I (if I = [a, b], Length(I) = b−a).

A good data representation of the assignment between
ground truth and detected objects is an undirected graph,
where vertices represent objects and edges represent object
assignments (See Figure 2). Such a graph is very similar
to a bipartite graph: the set of vertices is partitioned in two
subsets, corresponding to ground truth and detected objects,
and edges can connect only vertices of the two different sub-
sets. It may not be a bipartite graph since some vertices
may have no connection at all, corresponding to either a
missed or false detection. Multiple assignments will be rep-
resented by connected components containing many ground
truth and detected objects. The goal is therefore to remove
some edges so that only the allowed assignments are left
and the algorithm performance may be evaluated. This pa-
per proposes an algorithm to do this assignment.
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Figure 2: Example of assignment graph between 6 ground
truth and 6 detected objects. {GT6, D5, D6} is an over-
segmentation, {GT4, GT5, D3} is an over-grouping, GT3

is a missed detection, D4 is a false detection, and, as such,
{GT1, GT2, D1, D2} should probably be counted as two
correct assignments, {GT1, D1} and {GT2, D2}, after the
edge linking GT2 to D1 is removed.

First the graph is built by adding an edge between a
ground truth object and a detected object if they are con-
sidered similar enough (for convenience, objects and their



corresponding vertices in the graph are used interchange-
ably). There are many ways to evaluate the similarity of
ground truth and detected objects. In this work, a ground
truth object GT matches a detected object D if the follow-
ing spatial and temporal conditions are satisfied:

• if the types of the objects are available, they should be
identical,

• temporal matching: to ensure that similar objects exist
simultaneously for a temporal interval of a minimum
length, the following condition is enforced
Length(Time(GT ) ∩ Time(D)) ≥
α max(Length(Time(GT )), Length(Time(D)))

• spatial matching: many similarity measures or dis-
tances can be used, with a threshold, for the purpose
of comparing object trajectories. The method and
results presented in this work rely on matching ob-
jects in each frame, and counting a minimum num-
ber of matchings over the temporal interval of co-
existence Time(GT ) ∩ Time(D). The number of
feature positions D(t) located within the bounding
box GT (t) must be superior to a threshold Nfeatures.
The number of frames in which the previous condi-
tion is satisfied must be superior to a proportion β of
Length(Time(GT ) ∩ Time(D)).

The above matching definition is called complete match-
ing, as a reference to the temporal matching condition
that enforces a large overlap of the two objects. It was
also found useful to modify the temporal matching con-
dition in order to identify partial matchings between ob-
jects. , so that objects detected for a short time, too short
for temporal matching with a ground truth object, may
be identified as partial detection rather than counted as
false alarms. Ground truth objects may be assigned par-
tially to detected objects rather than counted as missed
detections. For that purpose, the temporal matching
for GT and D is Length(Time(GT ) ∩ Time(D)) ≥
α min(Length(Time(GT )), Length(Time(D))). This
second matching definition is called partial matching. The
parameters for object matchings are α, β andNfeatures and
could be different for the two matching definitions.

Once the graph is built (See an example of such a graph
in Figure 2), it may need to be simplified by removing edges
so that the graph is composed only of allowed assignments,
i.e. there are no multiple assignments. Algorithm 1 per-
forms this task. Let N(O) be the set of adjacent objects to
O, also called open neighbourhood in graph theory (if O is
a ground truth object, N(O) may contain only detected ob-
jects, and vice versa). Let Isolated(O) ⊂ N(O) be the set
of objects adjacent only to O, i.e. with degree 1.

Although one could pass first over the objects of one
type, then the other, there is in fact no need to make any

Algorithm 1 Algorithm for the assignment of ground truth
to detected objects.

When objects are assigned, the edges linking them to all
the objects other than the ones they are assigned to are
removed.
for all objects O do

if N(O) = ∅ then
O is considered assigned. If O is a ground truth
(resp. detected) object, a missed (resp. false) de-
tection is counted.

else
if Isolated(O) = ∅ then

if there exists an object O′ ∈ N(O) such that
Isolated(O′) = ∅ then

O is assigned to O′, and a correct assign-
ment is counted.

else if Isolated(O) = {O′} then
O is assigned to O′, and a correct assignment
is counted.

else
O is assigned to Isolated(O). If O is a
ground truth (resp. detected) object, an
over-segmentation (resp. over-grouping) is
counted.

distinction. All the objects are assigned when the algorithm
is finished, i.e. after one pass of the algorithm over each
object (See the proof in the Appendix on page 6). The main
goal of this algorithm is to maximize the number of correct
assignments and minimize the number of false and missed
detections by assigning them to over-segmentations or over-
groupings if possible. An over-segmentation will be identi-
fied only between a ground truth object and detected objects
adjacent only to this ground truth object (and similarly for
over-groupings).

When processing the graph described in Figure 2,
starting for example with ground truth objects, noth-
ing will be done for the first ground truth object GT1

since Isolated(GT1) = ∅, D(GT1) = {D1} and
Isolated(D1) = {GT1}. Next, when considering
GT2, the assignment {GT2, D2} will be done since
Isolated(GT2) = {D2}. As a result of this assignment,
the edge linking GT2 to D1 will be removed. The rest of
the assignments will be done in one pass over the remain-
ing ground truth and detected objects (GT1 will be assigned
to D1 when the latter is considered).

3.2. Performance Measures
The results of the assignment can be first used to visual-
ize the method performance, visually inspecting the correct
trackings and the errors. Another objective is the quantita-
tive evaluation of the performance. A first set of measures



is the number of assignments of each type. Proportions
may be computed by normalizing by the maximum num-
ber that could be reached, i.e. by dividing the numbers of
over-segmentations and missed detections by the number of
ground truth objects, and by dividing the numbers of over-
groupings and false detections by the number of detected
objects.

For some use, for example the automated search for the
parameters of a tracking algorithm that optimize its per-
formance, a unique performance measure is convenient.
For that purpose, costs may be associated with each type
of error, based on the application. In some cases, over-
segmentation may be less of an issue than missed objects,
e.g. to detect interactions between objects, while in other
false detections may not be tolerated, e.g. when a system
acts upon the detection of objects. A cost function can be
computed as

Cost = NOSCOS +NMDCMD +NOGCOG +NFDCFD

(1)
where COS , COG, CMD and CFD are respectively the

costs associated with over-segmentations, over-groupings,
missed detections and false detections. One can think of
other forms of cost functions, e.g. non-linear with respect
to some of the numbers, that could also take into account
the number of assigned objects in over-segmentations and
over-groupings, and with normalization to compare results
on different datasets. The cost function defined in Equa-
tion 1 can be normalized in the following way.

Cost =
NOSCOS +NMDCMD

NGT
+
NOGCOG +NFDCFD

ND
(2)

Alternatively, one can also choose to count the over-
segmentations and over-groupings as correct assignments
with respectively some false and missed detections. Pre-
cisely, an over-segmentation (resp. over-grouping) with N
detected (resp. ground truth) objects can be considered as
one correct assignment and N − 1 false (resp. missed) de-
tections. This reduces the number of performance mea-
sures, at the expense of details. A corresponding sim-
plified cost function can be used in this case: Cost′ =
NTMDCTMD + NTFDCTFD, with revised total numbers
of missed and false detections NTMD and NTFD and cor-
responding costs CTMD and CTFD.

Again, these choices are heavily dependent on the ap-
plication and the end user expectations, and it is difficult
to provide further generic recommendations. It is possible
to compute multiple performance evaluations with various
matching parameters, or look for optimized evaluation pa-
rameters as in [7]. The approach advocated in practise by
the authors of this work is to do at least two evaluations us-
ing the complete matching and partial matching definitions

and to combine visual inspection of the results with system-
atic search through parameter settings.

Other potentially useful performance measures from the
literature are the latency of detection [14] and the average
matching distance for correct assignments.

4. Experimental Results
A set of traffic videos with mixed traffic has been exhaus-
tively annotated. It contains 10 video sequences, for a to-
tal length of 5793 frames. 213 moving objects have been
manually tracked. The feature-based algorithm described
in [9], adapted from [2], is used for moving object detection
and tracking. The matching parameters are selected trough
trial and error, and visual inspection of the resulting as-
signments until the results are satisfactory for the end user.
The following settings are chosen: α = 0.5, β = 0.5 and
Nfeatures = 1. All the experimental results presented here
rely on the partial object matching definition. A raw sample
of the text output of the object assignment for one video se-
quence with 37 ground truth objects follows (assignments
are separated by a space and denoted by ’:’; on the left-
hand side are the identifying number(s) (id) of ground truth
object(s), and on the right-hand side are the id of detected
object(s)):

correct: 11:13 14:25 17:24 23:35
over-segmentations: 1:0,1 9:8,9,10 15:18,
19,20,21 20:26,27,28,29 28:37,38,39
over-groupings: 33,34:46
missed: 0 2 3 4 5 6 7 8 10 12 13 16 18
19 21 22 24 25 26 27 29 30 31 32 35 36

false: 2 3 4 5 6 7 11 12 14 15 16 17 22
23 30 31 32 33 34 36 40 41 42 43 44 45
47 48 49 50 51

Figure 3: Example of display of an over-segmentation: the
blue bounding box around the vehicle is the ground truth in
this frame, and it is assigned to 2 detected objects in black
and yellow (tracks represent past object positions).



The user can also inspect visually each type of assign-
ment overlaid over the video data (See an example of over-
segmentation in Figure 3). The main parameters of the
feature-based object detection and tracking method are the
connection distance Dconnection which controls the dis-
tance within which features are grouped, the segmentation
distance Dsegmentation which is a threshold on the rela-
tive displacement of features to disconnect them, and the
maximum distance MaxDist which is a threshold on the
maximum distance between connected features. A homog-
raphy matrix has been estimated for the video sequences,
and the parameters are therefore measured in world coor-
dinates, in meters. The performance of the method can
be analyzed for various settings of these three parame-
ters. The same weights are used for the cost function,
i.e. COS = COG = CMD = CFD = 1. Fig-
ure 4 illustrates the trade-off between over-segmentations
and over-groupings, missed and false detections, by plot-
ting the cost function, the numbers of correct assignments,
over-segmentations, over-groupings, missed and false de-
tections as a function of Dconnection for various values of
Dsegmentation, with MaxDist = 10.5 m. The trade-off
is clear for the numbers of missed and false detections:
there is a general trend of a decrease in the number of
missed detections and an increase in the number of false
detections with increasing Dconnection. The influence of
Dsegmentation is less clear from these plots, although low
values, e.g. Dsegmentation = 0.4 m, favour more missed
detections and fewer false detections than higher ones, e.g.
Dsegmentation = 2.8 m.

A search for optimal parameters can then be done. The
approach followed on this dataset is to find the parame-
ters minimizing the cost (with a small margin), and to se-
lect among them the parameters with the largest number of
correct assignments (that should be as close as possible to
the maximum over all parameters). For this dataset, this
approach yields the following parameters: Dconnection =
7 m, Dsegmentation = 1.6 m and MaxDist = 10.5 m
(with a minimal cost of 113 and 109 correct assignments).
Other parameter selections provide slightly higher costs
with slightly smaller numbers of missed and false de-
tections. This selection of parameters is different from
the former reference settings of Dconnection = 4 m,
Dsegmentation = 1.6 m and MaxDist = 6 m, obtained
manually through trial and error, which yield a higher cost
of 142 and a smaller number of correct assignments of 95,
with many more over-segmentations (75 instead of 37) and
similar numbers of missed and false detections.

A second dataset was labelled for about 1495 frames,
with 61 ground truth moving objects. It is part of a study
of the influence of the introduction of a scramble phase in
a signalized intersection on pedestrian safety [5]. There is
significant pedestrian traffic in this intersection and track-

ing proves very challenging for the feature-based track-
ing algorithm. Therefore, a search for the best parameters
was done. In this case, the goal is to detect conflicts be-
tween pedestrians and vehicles, in which case the perfor-
mance evaluation depends only on the number of missed
detections. The numbers of missed and false detections
are plotted as a function of Dconnection for various val-
ues of Dsegmentation, with MaxDist = 2 m in Fig-
ure 5. Trends are fairly similar to the observations made
for the first dataset. Minimizing the number of missed de-
tections leads to the selection of Dconnection = 0.64 m,
Dsegmentation = 0.6 m and MaxDist = 1.75 m with
5 missed detections, 56 false detections, 37 correct assign-
ments and a cost of 70. These parameter values are close
to the choice made in [5] of Dconnection = 0.85 m and
Dsegmentation = 0.4 m (MaxDist was not optimized and
set to 1 m). Following the same search approach as pre-
viously leads to the selection of Dconnection = 0.21 m,
Dsegmentation = 0.4 m and MaxDist = 1 m with 19
missed detections, 20 false detections, 31 correct assign-
ments and a cost of 48.

5. Summary and Conclusions
This paper has presented a novel algorithm for the assign-
ment of ground truth and detected objects. It enables a more
detailed evaluation of tracking methods, in a way that is well
suited for visual inspections by end users. It lends itself also
to quantitative evaluation and computation of various per-
formance measures. The approach has been illustrated on a
set of traffic videos recorded at two different locations.

Future work will focus on the development and study
of extra quantitative measures. In particular, the measures
should quantify the spatial and temporal mismatches be-
tween ground truth and detected objects. They should ac-
count for each instant a ground truth (resp. detected) ob-
ject has no match or is matched by more than one detected
(resp. ground truth) object. Initial work was done on aver-
age measures of over-segmentation and over-grouping per
object but was not included for lack of time. Per frame
average over-segmentation and over-grouping should al-
low to discriminate simultaneous from consecutive over-
segmentations and over-groupings. Other indicators of the
literature will be adapted to the assignments produced by
this approach and compared. This paper lays the ground-
work for object-based tracking performance evaluation.

Appendix
Theorem 5.1. When Algorithm 1 exits, all the objects are
assigned.

Proof. The case to be examined is that of objects that are



1 2 3 4 5 6 7 8
Dconnection

110

120

130

140

150

160

170

180

190

C
o
st

Dsegmentation=0.4

Dsegmentation=1.2

Dsegmentation=2.0

Dsegmentation=2.8

1 2 3 4 5 6 7 8
Dconnection

40

50

60

70

80

90

100

110

N
u
m

b
e
r 

o
f 

C
o
rr

e
ct

 A
ss

ig
n
m

e
n
ts

1 2 3 4 5 6 7 8
Dconnection

40

50

60

70

80

90

100

110

N
u
m

b
e
r 

o
f 

O
v
e
r-

se
g
m

e
n
ta

ti
o
n
s

1 2 3 4 5 6 7 8
Dconnection

0

5

10

15

N
u
m

b
e
r 

o
f 

O
v
e
r-

g
ro

u
p
in

g
s

1 2 3 4 5 6 7 8
Dconnection

30

40

50

60

70

80

90

N
u
m

b
e
r 

o
f 

M
is

se
d
 D

e
te

ct
io

n
s

1 2 3 4 5 6 7 8
Dconnection

5

10

15

20

25

30

35

N
u
m

b
e
r 

o
f 

Fa
ls

e
 D

e
te

ct
io

n
s

Figure 4: The cost function and the numbers of correct assignments, over-segmentations, over-groupings, missed and false
detections are plotted as a function of Dconnection for various values of Dsegmentation, with MaxDist = 10.5 m (the
parameters are measures in meters).

not assigned after having been considered by the algorithm
(each object is considered once in the main and only loop
of the algorithm over all objects). Such an object O has the
following properties:

N(O) 6= ∅ (3)
Isolated(O) = ∅ (4)
∀O′ ∈ N(O), Isolated(O′) 6= ∅ (5)

The last condition (5) implies that all the objects O′ ∈

N(O) have not been considered yet by the algorithm (if
they had, they would have been assigned to the non-empty
set Isolated(O′)).

There are two cases: either there exists an O′ ∈ N(O)
such that O ∈ Isolated(O′), or ∀O′ ∈ N(O), O /∈
Isolated(O′). In the first case, O′ will be assigned to
Isolated(O′) which includes O. In the second case, the
algorithm will assign each O′ ∈ N(O) to Isolated(O′)
except for the last object called O′

last. After these assign-
ment(s), the edges connecting O to each object of N(O) \
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Figure 5: The cost function and the numbers of missed and false detections are plotted as a function of Dconnection for
various values of Dsegmentation, with MaxDist = 2 m (the parameters are measures in meters).

O′
last will be removed. At this point, O ∈ Isolated(O′

last)
and Isolated(O′

last) will be assigned to O′
last.
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