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ABSTRACT 

Amid concerns for the environment and public health, there has been recently a renewed emphasis on 

active modes of transportation, i.e. walking and cycling. However, these modes have traditionally 

received research and practice focus secondary to motorized modes. There is consequently a lack of 

pedestrian data, in particular microscopic data, to meet the analysis and modeling needs. For instance, 

accurate data on individual stride length is not available in the transportation literature. This paper 

proposes a simple method to extract automatically pedestrian stride frequency and length from video data 

collected non-intrusively in outdoor urban environments. Pedestrian walking speed oscillates during each 

stride, which can be identified through the frequency analysis of the speed signal. The method is validated 

on real world data collected in Rouen, France, and Vancouver, Canada: the root mean square errors on 

stride length are respectively 6.1 and 5.7 cm. A method is proposed to distinguish pedestrians from 

motorized vehicles and used to analyze the 50 min of the Rouen dataset to provide the distributions of 

stride frequency and length.  
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INTRODUCTION 

Walking is a key non-motorized mode of travel and a vital component of most trips. Many road agencies 

have developed programs aimed to reduce traffic emissions by promoting less polluting forms of 

transportation such as walking and cycling. Public health researchers (agencies) also see in non-motorized 

modes of travel an opportunity to increase the level of physical activity among population at risk. 

Developing a better understanding of pedestrian movement is vital for improving the design methods of 

non-motorized and sustainable modes of travel. Such understanding can also increase the accuracy of 

behavioral models trying to link physical activity, health problems such as obesity, neighborhood design 

and travel behaviors. As well, pedestrians sustain the highest share of fatal road collisions among non-

motorized modes of travel. Therefore, non-motorized modes of travel are receiving more emphasis in 

transportation engineering as the public and policy makers become more aware of issues of urban 

sustainability and energy supply, and health concerns regarding the lack of physical activity of the 

population.  

However, these modes of travel, and walking in particular, have traditionally received research and 

practice focus secondary to motorized modes. The consequence is that there is a lack of pedestrian data, 

in particular microscopic data, to meet the analysis and modeling needs. For instance, accurate data on 

individual stride length are not available in the transportation literature. A previous project aiming to 

estimate the potential gain in physical activity for individual switching from a motorized mode to walking 

for short trips relied on simple estimations of stride length to convert distances into steps (1) (2). General 

hypothesis also had to be formulated regarding the average speed of walking and inherent energy 

expenditure. There is little research that discusses pedestrian stride length and the validity of currently 

used values.  

Pedestrian data can be collected with various levels of automation. As manual data collection is 

expensive, time-consuming and error-prone, there are ongoing efforts to develop automated video-based 

methods. A video analysis system was developed to detect and track automatically all moving objects for 

road safety analysis (3) (4). It can also detect and track pedestrians and was successfully applied to the 

collection of walking speed data (5) and the study of pedestrian-vehicle interactions for safety analysis (6) 

(7).  

This work presents a further use of pedestrian microscopic data, i.e. trajectories. Gait is the pattern 

of movement of the limbs of animals, including humans. This work deals with pedestrian walking gait, 

which is usually described by the following walking parameters: the walking velocity v, the stride 

frequency f and the stride length l, which are related by the following relationship      . During the 

preparation of (5), the display of pedestrian walking speeds extracted from video data showed that speed 

fluctuates periodically at each stride (see FIGURE 1 and FIGURE 2f,k): identifying the strides becomes 

thus possible and permits to measure stride frequency and length. While there has been much research on 

pedestrian walking speed, stride length is not so commonly measured, even less automatically non-

intrusively in the field. Distributions based on empirical measures are crucial for studies trying to estimate 

the impact of a shift from motorized modes to active transportation on the level of physical activity. 

Commonly, simple average estimations are used to translate distances into steps and energy expenditure 

(1) (2). This is a very crude model of the reality. Producing distributions of stride length and walking 

speeds, according to various conditions or population attributes would greatly enhance the current 

estimation methods. The current paper establishes the basis for such contributions. It presents an 

automated method for the estimation of stride frequency and length from trajectory data extracted from 

video data. The background of this work is presented in the next section. It is followed by a description of 

the proposed methodology, which is then validated on a new video dataset collected at an urban 

intersection in Rouen, France. Finally the paper is concluded and future work is discussed.  
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BACKGROUND 

Active Modes of Transportation 

Walking is a sustainable travel choice that brings benefits to the walker and to the environment. Actually, 

active transportation has many positive outcomes: it can help reduce greenhouse gas emissions, traffic 

congestion or physical inactivity and its related health problems. In fact, active transportation has been 

related to many positive health outcomes: lower body mass index, blood pressure, cholesterol level and 

triglyceride concentrations (8) (9). In a study carried out in the Atlanta region, each additional kilometer 

walked per day was associated with a 5% reduction in the likelihood of obesity (10). In Finland, active 

commuting to work was found to reduce the risk of ischemic stroke among adults (11).  

Recommendations for physical activity set a level of 10,000 steps per day for an adult in order to be 

active, which equals about one hour of moderate walking, five days a week (12) and accounts for a 

distance of five miles (13). For children, the recommended level is 12,000 steps for girls and 15,000 steps 

for boys aged 6 to 12 (14). Increasing the energy expenditure through walking is a valuable way to bring 

health benefits to the population (12). However, few attempts have been made to experimentally measure 

the number of steps required to cover a specific distance and assist in the development of strategies to 

make travel choice one way of improving public health. In the current context of declining shares of 

active modes of transportation but increasing interest towards them, it is important to update the current 

models to allow for relevant and integrated simulations. Transportation plans, policies and projects will 

hence be evaluated using comprehensive tools that explicitly assess the role of active transportation in the 

overall mobility of individuals.  

Pedestrian Walking Stride Frequency and Length 

Although most of the data on walking parameters comes from biomechanics and transportation research, 

there has been recently a strong interest in this data from the field of structural engineering. The closure 

of the London Millennium Footbridge in 2000 focused the attention on footbridge dynamic behavior 

under human loading (15). A good overview of the research is given in (15): in particular the ranges for 

the walking parameters found in the literature are given in TABLE 1. A more comprehensive literature 

review of walking speeds studies is available in (5). It is generally assumed that the measured data for all 

parameters follows the Gaussian probability distribution function. Differences are also reported in (15): 

“walking parameters and, in particular, free speed are influenced by physiological and psychological 

factors, such as biometric characteristics of the walker (body weight, height, age, gender), cultural and 

racial differences, travel purpose, type of walking facility”. The last source of variability is intra-subject 

variability, as walking parameters change in time for the same pedestrian.  

Pedestrian stride frequency was measured around 2 Hz in a controlled experiment described in 

(16). In (1) and (2), simple average values were used for different age groups: for adults, 1 mi is supposed 

to account for 2000 strides, which was increased by 10 % for elderly people, and proportionally to the 

height for young people.  

Automated Pedestrian Data Collection for Transportation 

Data collection in biomechanics and structural engineering is typically done in controlled experiments 

where pedestrians are instrumented or walk on surfaces embedded with sensors (e.g. force sensors) (15). 

Video sensors are the most common way to collect pedestrian data, in particular in real settings. Video 

sensors have several advantages. The first is that video sensors are minimally intrusive and capture 

naturalistic pedestrian movement with limited risk of attracting the attention of observed subjects, who 

could behave unnaturally if they were aware of being watched (17). Other advantages include the relative 

ease of installation, the rich data that can be extracted (i.e. complete trajectories), the large area that can 

be covered and their low cost. Video data may be analyzed manually, semi-automatically or fully 

automatically. Methods that are not completely automated are time-consuming and therefore limited in 
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terms of data volume, and have varying levels of accuracy. Computer vision techniques may be used to 

address these shortcomings.  

The transportation literature contains few studies that involved applying computer vision 

techniques to collect pedestrian data in real settings, especially in busy “open” outdoor urban 

environment, such as areas around an intersection or transit hubs. Open refers to the mixed traffic, 

including motorized vehicles and pedestrians, the variable environment, the multiple flows of moving 

objects that may enter and leave the scene, and stop for varying amounts of time in the field of view. 

Collecting observational data for pedestrians is particularly challenging due to the less organized nature of 

pedestrian traffic compared to vehicular traffic (18). Automated pedestrian data collection in such 

environments remains a largely unsolved problem in the field of computer vision. Most published work is 

limited to idealized conditions and small datasets, e.g. with heads and feet present all the time (16), low 

pedestrian volume (19) (20), or in heavily controlled indoor experiments including markers on 

pedestrians (16) (21). The collected datasets are typically small and in some cases, require significant 

manual input to correct the automated results and to supplement with additional data (20). The readers are 

referred to (5) (22) (23) for more details on the alternative computer vision methods that may be 

employed to detect and track pedestrians.  

The periodicity of measurements of walking pedestrians as a function of time was previously 

noticed in the literature (16) (24), and used to extract stride frequency and length (the force applied on the 

ground in (25)). However, no previous work used the walking speed for that purpose.  

METHODOLOGY 

Feature-based Tracking 

A feature-based tracking system was initially developed for vehicle detection and tracking as part of a 

larger system for automated road safety analysis (4) (26). Feature-based tracking is preferred because it 

can handle partial occlusion and does not require any special initialization. Tracking features is done 

through the well known Kanade-Lucas-Tomasi feature tracker. Stationary features and features with 

unrealistic motion are filtered out, and new features are generated to track objects entering the field of 

view. Since a moving object can have multiple features, features must be grouped using cues like spatial 

proximity and common motion. The grouping method described in (27) was extended to handle 

intersections (26). Tracking performance was deemed sufficient for the original road safety analysis, as 

well as for pedestrian data collection and safety analysis: walking speeds were validated in (5) for day- 

and night-time conditions with an excellent agreement between manual and automated walking speed 

values (respective root mean square error of 0.0725 m/s and 0.0548 m/s). 

Finally, an important step is to perform the analysis on a feature trajectory for each road user 

instead of the trajectory resulting of the average of its corresponding set of features, which suffers from 

strong discontinuities. Therefore, the feature that is tracked for the longest time is chosen to represent 

each road user (and considered to be its trajectory).  

Computing the Stride Frequency and Length 

The stride frequency f may be defined in two ways. The definition used in this paper is the vertical 

walking frequency, which is the number of times a foot touches the ground in a time unit, while the 

horizontal or lateral walking frequency is the number of times the same foot touches the ground. The 

lateral stride frequency is therefore half the vertical one. 

The method relies on the hypothesis that walking speed is periodic and its frequency is the stride 

frequency. Detecting the periodicity and estimating the frequency from a noisy signal, as is walking speed 

obtained from video data, is done in signal processing through spectral density estimation. The goal is to 

estimate the spectral density, or power spectrum, from a sequence of time samples of the signal. This can 

be done through a fast Fourier transform (FFT). The power spectrum is obtained by smoothing the speed 

time series, by subtracting its mean value, and then by computing the absolute value of the result of the 
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FFT of the signal. By observing the largest maxima in the power spectrum, the stride frequency may be 

extracted. The steps are the following: 

1. Frequencies are searched in an reasonable interval [fmin, fmax] for pedestrians (the range of 

1 to 3 Hz is used in (24)) 

2. Frequencies are considered if their corresponding power is superior to a ratio α of the 

maximum power.  

3. More than one frequency may satisfy the first two conditions. A maximum number of Nf 

frequencies are considered. 

4. The final stride frequency f is obtained as a function of the remaining frequencies: two 

methods are tried, namely the mean of the remaining frequencies or the frequency for 

which the power is maximum among the powers at the remaining frequencies. 

The parameters are listed in TABLE 2. The method may not find any frequency satisfying the conditions: 

this depends only on the frequency interval [fmin, fmax] and the ratio α. The impossibility to find a 

frequency can be attributed to a pedestrian with an atypical speed profile, to significant changes in time, 

or to another type of road user. Sample speed profiles and their corresponding power spectrums for 

pedestrians and motorized vehicles are displayed in FIGURE 1: it can be seen that the peak in the power 

spectrum is more or less easy to identify, but a frequency can be found for all these examples with the 

right parameter settings. It should also be obvious that simple heuristic approaches counting the number 

of peaks or times the signal crosses its mean value would not yield results on all these examples.  

Finally, the stride length is computed based on the distance traveled by the pedestrian over some 

period of time during which the stride frequency is supposed to be constant. The period of time 

considered in this work is the time duration ∆t during which the object feature is tracked. It could be 

necessary to go into more details if walking parameters change too much in time. The distance d traveled 

is measured along the path of the pedestrian and the stride length l is computed as   
 

    
. 

Classifying Pedestrians and Motorized Vehicles 

Open outdoor urban environment contain a mixture of road users. Feature-based tracking provides the 

trajectories of all road users which must then be classified by road user type for further analysis. In this 

work, it is required to distinguish pedestrians from other road users (mostly motorized vehicles). A simple 

threshold on the maximum speed reached by road users during their existence was used for classification 

in (5) and (28). A more sophisticated method was developed in (7), relying on the learning of labeled 

motion patterns and classification by trajectory similarity. In the present work, an additional cue is 

proposed for classification: speed profiles are different for pedestrians and motorized vehicles, the former 

exhibiting periodicity that is exploited to measure stride frequency and length.  

The classification is based on the following characteristics: the stride frequency f and length l, the 

frequencies f’ found in the interval [0, fmin], and the number of times per second that the speed profile 

goes through its mean value denoted noscillations. The method for classification is thus: 

 If a frequency f can be computed, and noscillations > npedestrian oscillations 

o If l < lpedestrian, the road user is classified as a pedestrian 

o Else the road user is classified as a motorized vehicle 

 Else if a frequency f’ can be computed and noscillations < npedestrian oscillations  

o The road user is classified as a motorized vehicle 

 Else the road user has an unknown type 

The threshold parameters npedestrian oscillations and lpedestrian were found easily by trial and error. Speed profiles 

and the corresponding power spectrums are shown in FIGURE 1 for a sample of pedestrians and 
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motorized vehicles: it can be seen that all pedestrians satisfy the first condition on frequency f and 

oscillations, while the motorized vehicles satisfy the second condition on f’ and the oscillations. The 

method performance is evaluated in the next section.  

EXPERIMENTAL RESULTS AND ANALYSIS 

Description of the Dataset 

Two datasets are used to validate the performance of the proposed method and to illustrate the pedestrian 

data that may be extracted from video data. The main dataset was collected in Rouen, France, in May 

2010, during the morning. The duration of the video sequence is about 50 min, during which traffic is 

mixed with significant pedestrian presence and low vehicle speeds. The second dataset was collected in 

Vancouver, Canada, in July 2007, during the late afternoon before a large public gathering in the 

Downtown area to watch fireworks (5). The duration of the video sequence is approximately 2 minutes 

and features groups of pedestrians. Camera calibration is necessary to obtain accurate measurements of 

walking parameters in world coordinates. It was performed using various traffic scene features and the 

method described in (29). The code for the computation of walking parameters and their validation was 

written in Matlab, using the signal processing toolbox FFT function.  

Validation 

Data was collected manually in the two datasets to validate the method. Pedestrian trajectories were 

screened by replaying the video with an overlay of the pedestrian feature trajectory. The following 

pedestrian trajectories were excluded from the validation datasets: 1) trajectories that involve more than 

one pedestrian, mainly due to tracking errors, 2) trajectories of pedestrians whose feet are not visible in 

the recorded video for an extended period of time, 3) trajectories of non-pedestrian road users such as 

vehicles, strollers, cyclists, and animals, and 4) extra trajectories of pedestrians with more than one 

trajectories (only one trajectory should be included in the validation set to avoid double counting). 

Examples of excluded validation trajectories from the Vancouver dataset are shown in FIGURE 2a-d. The 

longest period of time during which the largest number of complete strides were made was identified. The 

stride frequency is then derived, and the stride length is computed based on the distance traveled by the 

pedestrian as measured by video analysis. 102 and 50 pedestrians were manually annotated respectively 

for the Rouen and Vancouver datasets. FIGURE 2e-k show a number of pedestrian trajectories and 

corresponding speed profiles in time. 

Stride frequency and length can then be computed automatically for all pedestrians in the validation 

datasets and compared to the manual reference data. The accuracy is measured by the root mean square 

error (RMSE) over each validation dataset. The influence of the method parameters was systematically 

evaluated: the parameter settings are listed in TABLE 2. Depending on the parameters, no frequency in 

the power spectrum may satisfy the conditions: in such a case, the stride frequency and length cannot be 

measured by the proposed method.  

FIGURE 3 shows the performance of the method on the two datasets, measured by the RMSE for 

the stride frequency, and the number of pedestrians with calculable stride frequency. The first remark is 

that there is a trade-off between accuracy and the number of pedestrians with calculable stride frequency. 

As can be predicted from the proposed method, this number decreases as the ratio α increases and the 

pedestrian frequency range [fmin, fmax] becomes narrower (it is obviously independent of the selection 

method). Intuitively, the more selective the method is (by increasing α or narrowing [fmin, fmax]), the fewer 

the number of pedestrians with calculable stride frequency, but the more accurate the result. It is actually 

a little more complex, with differences for the two datasets: accuracy increases as the ratio α increases, 

except for large frequency ranges [fmin, fmax] on the Vancouver dataset: this could be explained by the 

longer trajectories and changing stride frequency in time. Regarding the frequency selection method, 

mean or maximum (see results on the first two rows of FIGURE 3), the mean consistently produces better 

results. Overall, the performance increases as the maximum number Nf of frequencies considered for 
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selection increases, for both methods of frequency selection (for lack of space, plots similar to the ones in 

FIGURE 3 are not included). The comprehensive performance evaluation over a portion of the parameter 

space allows picking good settings, by choosing a trade-off between performance and the number of 

pedestrians with calculable stride length. Setting a required minimum number of pedestrian with 

calculable stride frequency, “optimal” parameter settings were chosen (see TABLE 2) and the 

corresponding performance are listed in TABLE 3, with the best performance over all parameter settings: 

these results make clear that it is useful to trade a bit of accuracy to obtain more measurements of 

pedestrian stride frequency and length. The method performance is similar for the two datasets.  

Results 

All road users are tracked in the Rouen video sequence, their stride frequencies and lengths are computed, 

and they are classified using the proposed method. Using the values npedestrian oscillations = 1.12 and lpedestrian = 

1.2 m and the optimal settings for the computation of stride frequency and length (see TABLE 2), the 

classification performance is measured on the validation dataset, augmented with 94 motorized vehicles. 

The confusion matrix is reported in TABLE 4. Performance is deemed sufficient to apply the method to 

the whole dataset. It should be noted that other cues can be added to improve the results, based on 

maximum speed (5), trajectory location (7), and image appearance (30).  

The distributions of stride frequency and lengths are displayed in FIGURE 4, and the statistics for 

all the datasets are provided in TABLE 5. These results are within or close to the range reported in other 

studies in the literature (TABLE 1). Interestingly, the stride frequency and length are both lower in the 

Vancouver dataset than in the Rouen dataset. Apart from population variations, this can be attributed in 

Vancouver to the slope of the street covered by the camera (while the ground is flat at the Rouen 

intersection), the time (evening) and the type of the street (residential), reinforced by the presence of 

pedestrians going to an outdoor event. One can also notice the difference in the mean stride frequency and 

length between the annotated portion and the whole of the Rouen dataset, as well as the extreme values, 

small and large, in the distribution presented in FIGURE 4: the most likely causes of these observations 

are that there may be a population of people walking more slowly in the whole dataset, as well as tracking 

and classification errors (although conditions on minimum displacement were enforced, the tracked object 

may be the bag of a person, or another type of road user).  

The conditions to collect pedestrian walking parameters successfully is the quality of the video 

data: as was noted in previous studies (5) (28) (7), the size of pedestrians in images is the most important 

factor, typically requiring high resolution videos (superior to 1080 by 1440 pixels) to cover large enough 

areas for interesting studies. Another important factor is the frame rate. A first attempt at developing the 

method proposed in this paper was made on video data collected in Montreal using network cameras: the 

video was highly compressed, but more importantly, the frame rate was only 15 images/s, compared to 30 

and 25 images/s respectively for the Vancouver and Rouen datasets. This has an obvious impact on the 

possibility to distinguish short speed time variations.  

Another difficulty is caused by long trajectories in which pedestrians stop for a moment, then walk 

again, and change pace (see for example FIGURE 2f). The periodicity of the speed will change in time 

and it will be difficult for the proposed method to identify the stride frequency. A solution is to do the 

analysis at multiple scales in order to identify these variations. Being able to measure all the walking 

parameters in time will yield a better understanding of pedestrian behavior, how people adapt their gait 

depending on the environment, other pedestrians, motorized traffic, and street crossing.  

CONCLUSION 

This paper proposed a simple method to collect pedestrian walking parameters, namely stride frequency 

and length, from real world video data collected at urban intersections. The method is general and could 

be applied to any pedestrian speed profile obtained through other means, e.g. using intrusive or non-

intrusive sensors as in this work. The analysis of the power spectrum and the speed profile provided also a 

simple but surprisingly effective cue to distinguish pedestrians from motorized vehicles, which can 
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supplement other methods. The approach was validated on two datasets, collected in Europe and North 

America, and yielded satisfying results, e.g. the error on stride length is 5.7 and 6.1 cm.  

It is not yet possible to update the work presented in (1) (2) as the models require a distribution of 

the stride length for various age groups, which cannot be determined automatically in video data collected 

in outdoor urban environments. Future work should address long pedestrian trajectories and study how 

pedestrian behavior adapts to the environment. Now that an automated method is available to extract 

walking parameter from video data, the variability of these parameters should be investigated across 

populations of pedestrians, as a function of body weight, height, age, gender, travel purpose, type of 

walking facility, and across time for the same pedestrians.  
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TABLE 1  Ranges for the walking parameters from the literature review done in (8). Note that only two 

studies were found for the stride length 

Walking parameter Range of the mean Range of the standard deviation 

Walking speed (m/s) 1.19 – 1.60 0.15 – 0.63 

Stride frequency (Hz) 1.82 – 2.0 0.11 – 0.186 

Stride length (m) 0.75 – 0.768 0.07 – 0.098 
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TABLE 2 Different settings for the computation of pedestrian stride frequency and length 

Parameters Settings Optimal Settings 

Pedestrian frequency range 

[fmin, fmax] (Hz) 

[0.8, 3.2], [1.0, 3.0], [1.2, 2.8], 

[1.4, 2.6], [1.6, 2.4] 

[1.4, 2.6] 

Ratio α of the maximum power 0.10, 0.15, ..., 0.40 0.15 

Maximum number Nf of frequencies 

considered for selection 

5, 10, …, 30 10 (Rouen dataset) 

20 (Vancouver dataset) 

Frequency selection method mean, max mean 
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TABLE 3  Performance of the method and number of pedestrians with calculable stride frequency for the 

chosen optimal settings (see TABLE 2). Between parentheses are provided the minimal RMSE values over all 

parameters settings with the corresponding number of pedestrians. 

Dataset RMSE for stride 

frequency (Hz) 

RMSE for stride 

length (m) 

Number of pedestrians with 

calculable stride frequency 

Rouen 0.170 

(0.123) 

0.061 

(0.040) 

101 

(75) 

Vancouver 0.161 

(0.090) 

0.057 

(0.030) 

42 

(11) 
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TABLE 4  Confusion matrix for the classification of road users 

 Type predicted by the classification method 

True type Motorized vehicles Pedestrians  Unknown 

Motorized vehicles 87 2 5 

Pedestrians  6 95 1 
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TABLE 5  Results for the different datasets, including the validation datasets, with the manual and 

automated measurements 

Dataset Stride 

frequency 

(Hz) 

Stride length 

(m) 

Number of pedestrians 

with calculable stride 

frequency 

Rouen annotated dataset (manual) 1.908 ± 0.214 0.748 ± 0.139 102 

 annotated dataset (auto) 1.901 ± 0.173 0.759 ± 0.163 101 

 whole dataset 1.897 ± 0.147 0.678 ± 0.217 1253 

Vancouver annotated dataset (manual) 1.703 ± 0.311 0.625 ± 0.119 50 

 annotated dataset (auto) 1.753 ± 0.174  0.679 ± 0.132  42 
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FIGURE 1  Speed profiles and the corresponding power spectrums for a sample of 4 pedestrians (top) and 2 

motorized vehicles (bottom). The horizontal dashed line represents the mean of the speed for each speed 

profile, and the threshold α of the maximum power for each power spectrum. The vertical dashed black line 

represents the first frequency of the search range [fmin, fmax] (the optimal settings in TABLE 2 is 1.4 Hz). 
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a)  unseen feet

 

b) partial occlusion  

 

c)  short trajectory  

 

d)  non-pedestrian  

 
e1) object trajectory 

 

e2) frame 100 

 

e3) frame 380 

 

e4) frame 660 

 
f) Speed profile of the longest feature showing time of sample frames e1, e2, and e3.  

 
g) turning movement  

 

h) turning movement

 

i) shadow trajectory

 

j) partially blocked

 
 k) Speed profiles of two turning movements (g,h) and a shadow trajectory i)

 

FIGURE 2  Sample trajectories from the Vancouver dataset. Figures a-d show trajectories excluded from 

validation due to visual obstruction of feet (a,b), trajectories of pedestrians making fewer than 5 strides (c), 

and non-pedestrians (d). Figures e1-e4 show sample frames of a pedestrian trajectory with an intermediate 

stop and Figure f shows the corresponding speed profile. Figures g,h,i, and j show non-typical trajectories 

included in the validation. Figure k shows their respective speed profiles. 
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FIGURE 3  Performance of the method on the two datasets: the top two rows of figures show the RMSE for 

the stride frequency (on the same scale), respectively with the mean or maximum frequency selection method; 

the bottom figure plots the number of pedestrians with calculable stride frequency. The number on the x axis 

is the first frequency of the search range [fmin, fmax], corresponding respectively to the frequency intervals 

[0.8, 3.2], [1.0, 3.0], [1.2, 2.8], [1.4, 2.6], [1.6, 2.4]. 
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FIGURE 4  Distributions of the stride frequency and length for the Rouen dataset (50 min). 
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