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ABSTRACT (ENGLISH) 

This study presents a surrogate approach for safety analysis of freeway facilities using semi-

automated trajectory collection and behavioural analysis from surrogate measures of safety (in 

particular time to collision). This methodology is proposed as a potential alternative to the 

classical approach based on historical accident data, particularly suited for evaluating the 

microscopic safety effects of highway treatments for which there is a lack of traffic and accident 

data. The proposed methodology is illustrated using as a small sample of freeway ramps from 

which videos where available as part of a safety study on one-way lane-change closures near 

urban freeway entrances and exits. Various methods of aggregating the data, spatially and 

temporally, are explored for road safety analysis.  
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RÉSUMÉ (FRANÇAIS) 

Cette étude présente une approche substitutive d’analyse de sécurité sur autoroute reposant 

sur la collecte semi-automatisée de trajectoires et une analyse des comportements des 

conducteurs à l’aide de mesures substitutives de sécurité (en particulier, le temps à la collision). 

Cette méthodologie est proposée comme alternative potentielle à l'approche classique basée 

sur les données historiques d’accidents qui est particulièrement adaptée à l’évaluation 

microscopique des effets des traitements de sécurité sur autoroute en l’absence de données 

historiques. La méthodologie proposée est illustrée sur un échantillon de bretelles d’accès pour 

lesquelles des données vidéos sont disponibles, dans le cadre d'une étude de sécurité sur les 

lignes de délimitation à gauche de la voie 1 (LCGV1) près des entrées et des sorties 

d’autoroute urbaine. Diverses méthodes d'agrégation des données, spatialement et 

temporellement, sont explorées pour l'analyse de la sécurité routière. 



MOTS CLÉS 
Analyse vidéo, comportement des conducteurs, étude des fermetures de changement de voie, 

sécurité routière, mesures substitutives de sécurité, temps à la collision 

1. INTRODUCTION 

An important area of research in road safety is the identification of effective countermeasures of 

under-designed transportation facilities. Determining the safety effectiveness of a treatment can 

be very challenging; in particular when very little historical before-after accident data and 

experience are available from past studies. Furthermore, many transportation authorities do not 

want to test safety treatments on a large-scale and in a live environment, for fear of 

unnecessarily putting the general public at risk. 

Improving road safety through effective countermeasures is at the center of the transportation 

safety research. How does one reliably evaluate new transportation safety strategies without 

waiting for accidents to happen, as in the classical before-after approach? In this respect, 

researchers and practitioners are seeking valid proactive safety evaluation methods to evaluate 

safety treatments without exposing traffic to a possible increase in accident risk. Such methods, 

also collectively known as surrogate safety analysis, can be traced back at least to the late 

1960’s (1) where conflict measures were devised to solve the problem of long return periods for 

collision observations (2). The primary surrogate safety approach consists of conflict 

analysis (3). The effectiveness of the conflict analysis approach has been much disputed and 

the primary arguments against the approach typically include the subjectivity of conflict 

observation, the difficulty in defining surrogate measures of safety, and an ambiguous 

relationship between conflicts and collision frequency and conflicts and collision severity (4). 

Additionally, the cost and reliability of manual data collection is another impediment to the 

widespread use of the approach.  

This research aims to tackle some of these technical challenges by making use of emerging 

information technology systems to facilitate objective and consistent traffic behaviour data 

collection. This research is expected to provide tools to perform more accurate analytical 

analysis with the aid of more powerful, more accurately calibrated traffic flow models by 

integrating real, on-site behavioural data, instead of relying on theoretical behavioural models.  

This paper develops a methodology to determine the safety status of freeway exits and on-

ramps using video analytics and conflict analysis and indicators. For this purpose, vehicle size, 

position, speed and acceleration data is generated based on video footage for multiple vehicles 

simultaneously. This rich data is then mined to develop surrogate measures of safety for a given 

location. The methodology is developed and illustrated using a case study involving one-way-

lane change-closure marking at freeway exists and on-ramps. The paper is organized as 

follows: the next section will cover previous research, followed by an overview of the 

methodology, a description of a case study to apply the methodology and some initial 

experimental results. 



2. PREVIOUS RESEARCH 

Surrogate safety analysis is not a new idea. Many papers have argued for and against the use 

of conflict analysis as a reliable safety measure, both on the standpoint of collision severity and 

collision frequency. The reader is invited to consult (3), (4) and (5) for detailed summary of the 

results of conflict studies. A reoccurring argument against conflict studies in transportation 

safety involve the difficulty in obtaining quantitatively defined and objectively measured data and 

that the application of the methodology is often too broad and therefore yields insignificant 

results. Chin and Quek (4) further applied conflicts analysis in a freeway merging safety study. 

This paper will also put to use many of the conflict-prediction models developed by (6). 

Obtaining objective data is becoming more feasible with advances in video tracking algorithms, 

increased access to more affordable processing power, increased data management, and 

emerging transportation information technology systems. The use of video analysis for 

transportation studies is rising dramatically. Many traffic behaviour studies have been conducted 

around data collected from cameras, e.g. (7); video data has been used for simulation 

calibration and traffic flow theory (e.g. NGSIM1); and some companies now offer automated 

traffic counting solutions using video detection. Automated video analysis for conflict analysis 

has been developed and used extensively by Sayed, Saunier and Ismail primarily for road 

safety analysis at intersections, including vehicle conflicts (8) and pedestrian-vehicle conflicts 

(9) amongst others. 

As a key element in the development of accurate traffic measurements, there is a growing 

interest in computer vision for automated traffic video analysis, which allows for the acquisition 

of multiple traffic data along road sections. Versavel lists volume, speed, density, headway, and 

location as the primary traffic data; and counts, speed (acceleration), vehicle length, class, type 

and position as the individual vehicle data (10). The reader is invited to consult (10), (11) and 

(12) for more detailed information on the specifics of vehicle feature tracking.  

The main benefits of automated video analysis for safety are two-fold: firstly, it offers a 

convenient, low-cost method of calibrating driver behaviour parameters for specific roadway 

types and regions (without the need to install intrusive monitoring equipment), and it provides a 

flexible tool for complex driving behaviour analysis, particularly useful for microscopic road 

safety analysis using surrogate safety approaches. 

However, video analytics is not without limitations such as the complexity of computer vision 

algorithms, the sensitivity to field of view and visibility, and individual vehicle tracking problems 

in high-density flows. Measurement accuracy is highly dependent on the quality of the camera 

installation as well as the flow conditions. Weather conditions (i.e. visibility), obstacles (i.e. road 

signs, posts and overpasses), camera field of view and angle, curved roadway sections, and 

occlusions from dense traffic and large vehicles (i.e. trucks) all cause tracking problems. Higher 

accuracies can be achieved by limiting these line-of-sight issues. Of course, many of these 

limitations are not specific to any particular trajectory-tracking technology, including human 

observers. Given ideal conditions, the practical rated accuracy of traffic detection by means of 
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automated video analysis is in the 95-99% range for detection (13). Performance measures for 

tracking algorithms, however, are less clearly defined and make results from different systems 

difficult to compare. Automated analysis also has the significant advantage of having no loss of 

attention or error in judgement, and the ability to consistently measure velocity and position. 

Finally, video analysis may be used as an assisting tool, where large amounts of video data are 

filtered automatically to be reviewed by traffic and safety experts. 

3. METHODOLOGY 

The main objective is to develop surrogate measures of safety that allow us to define the safety 

status for a given location using surrogate measures of safety related to the probability of 

collision. Vehicle size, position, speed and acceleration data is extracted from video footage for 

multiple vehicles simultaneously, and is then mined for traffic conflict measures and other 

behavioural data. The measures extracted are then summarized and analyzed to obtain 

conclusions about the road safety status of a given location, particularly for site comparison. 

This indicator can be then used for a hotspot identification analysis, control-case studies, or a 

before-after analysis for assessing the effectiveness of a treatment of interest. The procedure is 

outlined as follows: 

 Define the relevant conflict measurements related to freeway surrogate safety analysis. 

 Collect a sufficiently large video data set efficiently for each site. 

 Spatial calibration of the measurements done in the camera image space to the 

roadway ground plane using satellite imagery. 

 Extract trajectory data: 

o Feature tracking (moving pixels). 

o Object recognition and filtering (features are grouped together into objects for 

each physical vehicle they represent based on proximity and motion 

similarity (10)). 

 Perform an interaction classification and conflict measurement analysis. 

 Summarize measures and define risk indicator. 

 Make conclusions.  

CONFLICT MEASUREMENTS 

These have been broadly defined by many publications, but in general they tend to be derived 

from three variables: the positions x and y of two or more vehicles as a function of time t. In a 

2001 report, the FHWA identified and compiled a list of the major and reoccurring surrogate 

measures of safety used in literature. The report identified seven major measures: gap time 

(GT), encroachment time (ET), deceleration rate (DR), proportion of stopping distance (PSD), 

post-encroachment time (PET) initially attempted post-encroachment time (IAPT), and time to 

collision (TTC). The FHWA report defines these measures as indicators of probability of 

collision.  

For the purpose of freeway conflict analysis where we assume no head-on or perpendicular-

lateral conflict situations and a certain amount of constraint-of-direction, we focus primarily on 

two types of major interactions: rear-end (type A), and lateral-diagonal (type C). Each of these 



can be observed as either converging or diverging (see Figure 1 for the classification tree and 

Figure 3 for a diagram of each of these situations). Converging interactions are evaluated using 

the TTC measurement which can be defined as the time until two objects, whose paths intersect 

and meet, collide, assuming that their trajectories and speeds remain unchanged (6). The TTC 

is used in this study because it is one of the most popular and appropriate indicators for 

intersections or ramps facilities, as in our case study. It can be extended to be robustly 

computed for all converging interactions with a likely collision course, in which case other 

indicators may not be needed (8). In situations where TTC does not exist (as the vehicles are 

not predicted to collide), but paths converge, we extract the PET measurement instead. 

Additionally, we also extract the position (x, y) of each predicted point of collision CP. 
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Figure 1 – Interaction classification and data extraction flowchart. 



 

Feature Tracking 

This study uses the video analysis tool developed at the University of British-Columbia to track 

vehicles from video data (10) (14). Individual pixels are tracked and followed over the course of 

many frames and recorded as features trajectories. 

The positional analysis of vehicles requires accurate estimation of the camera parameters. The 

camera parameters calibrated in this study are six extrinsic parameters (that describe the 

location and orientation of the camera) and two intrinsic (that represent the projection on the 

image space). Once calibrated, it is possible to recover real-world coordinates of points in the 

video sequence that lie on a reference surface with known model (pavement surface). When 

video data is collected by a third party, access to the camera is not possible and therefore all 

camera parameters must to be inferred from video observations and an orthographic (aerial) 

image of the intersection. This is done using a robust calibration method relying on various 

feature based on the shape, position, and length of remarkable objects in both image and world 

spaces (15). Time is measured in frames: a datapoint (position per object per frame) is collected 

for each new video frame and there are 29.96 frames per second. A displacement of 1 metre 

from one datapoint to the next (1 m/f) represents an object traveling at a speed of 29.96 m/s or 

107.86 km/h. This high polling rate produces very large datasets of small increments. 

 

Figure 2 – Sample X,Y data for spatial analysis of entrance 56 (Bouchard), autoroute 20 
eastbound, Dorval, Montreal. Datapoints are filtered to include only the study area (50 m long by 

10 m wide). 

A second phase of data filtering was developed specifically for this study to optimize the 

tracking reliability under the constraints of highway flow and for the type of camera angles used 



to record the video footage. This phase includes edge and warm-up truncation, expected 

trajectories coordinate transformation, noise reduction and tracking error flagging (such as 

duplicate objects, multiple vehicles per object, split objects, etc.) for manual review. These 

filtering routines were manually validated for each new site to a 95 % confidence level. Figure 2 

shows sample trajectories being extrapolated and the selection of a study area to remove 

unreliable trajectories. Vehicles were assigned a lane and a set of transformed coordinates for 

rear-end calculations based on an expected trajectory representing the average path of 

trajectory clusters associated with each lane. 

Interaction classification and conflict measurement 

The trajectory processing begins by analysing, frame by frame, every pair of objects and 

classifying their interaction type: rear-end (type A) for vehicles in the same lane, and diagonal-

lateral converging (type C) for vehicles in different lanes. A flowchart of the general classification 

and data extraction algorithm is depicted in Figure 1Erreur ! Source du renvoi introuvable.. 

Then the point of conflict, i.e. the potential future collision point, is estimated from the vehicles’ 

dimensions, positions, differential velocities, and angle of approach. See Figure 3 and (6) for 

details on the conflict point prediction algorithm. The TTC is simply the time until both vehicles 

enter the predicted conflict scenario. The interaction algorithm uses a fifth interaction 

classification: diverging; however, other than providing a converging to diverging interaction 

ratio, this type of interaction is largely ignored as it does not generate any point of conflict. 

 

Figure 3 – Predicted conflict types. TTC is calculated from speed, position, width W, length L 
and angle of conflict α for converging interactions. 



Summaries 

Among the various ways in which we can summarize the TTC data, three particular ways are 

proposed: a coordinate-density conflict-point heatmap by building a two-dimensional weighted 

histogram of the CPs using the inverse of TTC as weight (until an exact relationship between 

accidents and TTC is validated); a distribution of all instantaneous TTC observation; or a 

distribution of the minimum TTC observed for every unique pair of objects or individual object. In 

practice, the TTC distribution associated with unique pairs is almost identical to the distribution 

associated with unique individuals. 

Other relevant behaviour data is also extracted, including speed distributions; a lane change 

matrix; the percentage of converging interactions to total interactions, where > 50% would 

suggest that a section of highway has a tendency to push vehicles together, where as < 50% 

would suggest a tendency of pulling the vehicles apart; the rear-end to diagonal interaction ratio, 

and PET distributions. 

4. A CASE STUDY: FREEWAY RAMPS 

The proposed methodology is illustrated using, as an application environment, a set of freeway 

ramps with and without a lane-change-closure marking (termed LCGV1) located between the 

middle and outside lanes in exit and entrance ramps of freeways – see Figure 4.  

a)   b)  

Figure 4 – LCGV1. a) Exit ramp section diagram demonstrating an LCGV1 and an illegal lane 
change. Lanes are numbered sequentially starting with the outer-most lane, excluding merging 
lanes. b) LCGV1 along autoroute 720 eastbound, entrance 3 (right), Montreal. Source: MTQ. 

This marking treatment is particularly popular in urban multilane freeways in Quebec, Canada. 

This treatment typically bans lane changing from the middle or inside lanes to the outside lane 

along the weaving zone, but allows lane changes from the outside lane to the inside lane. This 

marking was initially implemented on ramps that do not meet all required design standards 

(referred as design exceptions). For instance, ramps treated with this type of marking were 

those with poor approaching visibility, short weaving zones, or close proximity to other ramps. 

However, this marking has proliferated to standard sites as well. Despite its popularity, this 



safety treatment has been a source of concern because the potential impact on highway safety 

(vehicle conflicts and collisions) has not been fully understood and the benefits are still debated. 

This case study aims to illustrate the use of the proposed approach. For this purpose, various 

steps are observed and the outcome of this process determines the safety status of each 

freeway ramp. Each of the steps is detailed as follows:  

i) Conflict measures definition: The conflict definitions are the same as those set out in the 

previous methodology defined in section 3. 

ii) Site selection: The ramps involved in this case study are those for which video data was 

available as part of an attempted before-after LCGV1 treatment study. Video data was 

collected for the three test sites on the Montreal Island and their main characteristics are 

presented in Table 1. The sample analysis was performed just upstream of one LCGV1 

entrance and two non-LCGV1 entrances. The 20E-Dorval site did not feature any treatment 

during video recording.  

Site 720E-Green 20E-Dorval 138W-Clement 

Type Freeway Entrance Freeway Entrance Freeway Entrance 

Lanes 4 3 2 

Treatment Yes No* No 

Meas. Avg. speed 60 km/h 100 km/h 60 km/h 

Meas. Avg. flow 2193 veh/h 2866 veh/h 1559 veh/h 

Est. Loop Det. flow 3187 veh/h** 2636 veh/h** 1613 veh/h** 

Sample frame 

   
Orientation Looking downstream Looking downstream Looking downstream 

Nearest upstream ramp 465m 502m 509m 

Nearest downstream ramp 473m 506m 1019m 

Study area 75m 50m 60m 

Distance from pier-head 0m 75m 0m 

Datapoints/h 364,600 320,000 272,000 

CPs/h 96,000 45,000 90,000 

Unique int./h 4,054 18,994 1,842 

Hours analyzed 6 hours, off peak 5 hours, off peak 6 hours, off peak 

Date May 12, 2010 May 12, 2010 May 12, 2010 

Table 1 – Characteristics of the three sites evaluated. **The loop detector flow is estimated from 
expansion factors. 

iii) Video processing: Low-light and peak periods were avoided as they were problematic for 

data collection. 20E-Dorval had a slightly reduced study area as occlusion from a lamp-post 

caused some tracking problems near the pier-head. 

iv)  Conflict measures: The traffic conflicts analyzed for the case study correspond primarily to 

the traffic movements on all lanes upstream of the pier-head to properly capture behaviour 



related to movement in anticipation of an exit or entrance of other vehicles. It is theorized that 

the beginning of the lane-change-closure is a critical point of conflict for drivers as is the pier-

head (see Figure 5 for labels). The Highway Capacity Manual defines 762 meters upstream, 

152 meters downstream of an exit or 152 meters upstream, 762 meters downstream of an 

entrance as the design influence zone (16) although comparing sites over this distance is not 

very practical particularly because most sites have a design influence zone which overlaps 

other entrances and exits.  

 
Figure 5 – a) critical point for lane-change-closure treatment; b) start of exit ramp merging 
section; c) pier-head (painted); d) pier-head (concrete); e) end of entrance ramp merge section. 
The distributions for unique pairs and unique individuals overlap. 

5. EXPERIMENTAL RESULTS 

The percentage of converging interactions was found to be 50.0% for the 720E-Green site, 

49.5% for the 20E-Dorval site, and 50.5% for the 138W-Clement site indicating that it had the 

greatest proportion of conflicts overall and the 20E-Dorval had the smallest proportion of 

conflicts overall. 

Also, the dominant conflict types found for the 20E-Dorval site were type A (rear-end) conflicts 

with more than twice the number of recorded type A conflict interactions as type C conflict 

interactions. The dominant conflict types found for the 720E-Green site were type C (diagonal) 

conflicts with almost twice the number of recorded type C conflict interactions as type A conflict 

interactions. This might simply be explained by a greater rate of observed lane changes for the 

720E-Green site, and more lanes to change to, but might also simply describe a behavioural 

tendency of more vehicle following in the 20E-Dorval and a more overtaking in the 720E-Green 

site. 

The 720E-Green site’s heatmaps and TTC distributions are shown in Figure 6. The 20E-Dorval 

site’s heatmaps and TTC distributions are shown in Figure 7. 

The heatmaps’ density should be read as a concentration of potential collision points with 

low TTC measurement; however they are not yet calibrated to represent probability of 



collision. Nevertheless, we can observe significant differences between the 720E-Green 

(treated) and 20E-Dorval (untreated) site. There are a great number of points with low TTC on 

the outside (first) lane of the 720E-Green site, particularly for type A conflicts (rear end) just past 

the entrance’s merging section. 20E-Dorval’s low-TTC points tend to cluster on the second and 

third lanes. Hotspots tend to cluster just beyond the analysis area, as the predicted zones of 

collision are those generated by the movements of the vehicles inside the study area only. The 

positioning of the points along the alignment direction of the freeway appears to be highly 

dependent on the relationship of TTC over average speed. 

 

 
Figure 6 – Heatmap and TTC distribution for the 720E-Green site; heatmap distances in metres; 

c) pier-head (painted); d) pier-head (concrete); e) end of entrance ramp merge section as 
labeled in Figure 5. The distributions for unique pairs and unique individuals overlap.  
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Figure 7 – Heatmap and TTC distribution for the 20E-Dorval site; heatmap distances in metres 
metres; c) pier-head (painted); d) pier-head (concrete) as labeled in Figure 5. The distributions 

for unique pairs and unique individuals overlap. 

The TTC measures appear to be distributed according to a gamma distribution. The TTCs seem 

to be concentrated around different points for each site. 720E-Green has a concentration at 10 
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suggesting that TTC measures are a composite of distributions. This is further reinforced by the 

difficulty we had in fitting a single gamma function to the observations, regardless of the type or 

aggregation. 

The total lane changes were also recorded and their ratio, as a percentage of all observed 

drivers, calculated. 720E-Green shows the greatest rate or lane changing, likely due to the 

lower speed, slightly longer analysis area, shorter distances between merging sections and 

confirms a subjectively observed greater rate of freeway entering and exiting activity in the area. 

In the 20E-Dorval and 720E-Green sites, the rate of lane changing from the second to the first 

lane wasn’t significantly lower, and for the 720E-Green site, which had the treatment applied 

this rate was the second-highest, suggesting that drivers do not obey the treatment. 

Site 720E-Green 20E-Dorval 138W-Clement 

1 → 2 291 3.32% 379 2.94% 425 4.54% 

2 → 3 555 6.32% 276 2.14% - - 

3 → 4 350 3.99% - - - - 

4 → 3 257 2.93% - - - - 

3 → 2 289 3.29% 79 0.61% - - 

2 → 1** 377 4.30% 150 1.16% 274 2.92% 

Table 2 – Summary of lane changes. Left columns are total lane changes, right columns are a 
percentage of total objects. **Lane changes from the second to the first lane are those which 

the treatment is designed to forbid. 

6. CONCLUSION 

Building a study around video data means that the quality and depth of the analysis is 

constantly improving. The original observation data is never lost and can be revisited to perform 

new types of measurements. Many of the graphs and measures presented are only snapshots 

of the current development process. There is a lot of room for expansion and also for 

improvement. 

This study demonstrates the methodology of TTC extraction and calculation. However, the data 

collected and analysed so far are insufficient to make conclusions for or against the 

implementation of this lane-change-closure treatment, particularly because the analysis sites 

were not identically located with respect to the ramp geometry. The case study will be further 

explored with a greater data sample in future research; statistical analyses between TTC curves 

and site characteristics will be attempted, as well as attempting to validate the usefulness of 

these curves by comparing them to real accident data, both on a macroscopic and microscopic 

scale. The usefulness in using TTC as an intermediary measure of risk lies in the ease of its 

collection, particularly in situations where data is unavailable for safety reasons, as well as a 

safety risk hotspot identification tool on a more microscopic level. 

The steps needed to refine and expand this research are clear: 



i. More video data will be collected, at higher resolutions, with less compression artefacts 

and at locations allowing for a greater coverage of merging sections and interaction 

zones. 

ii. More conclusive statistical analysis of correlation between heatmaps and accident 

history. 

iii. Refined road user tracking and point-of-conflict prediction. Particularly, use of improved 

filtering to take advantage of high polling rates to increase accuracy of speed and 

position measurements.  

iv. TTC distribution curve fitting (i.e. gamma or gamma composite) and modeling with 

respect to geometry 

v. Expanded diagonal collision prediction: collision paths adjusted for natural road 

alignment (for TTC’s with respect to an “expected trajectory”) 

vi. Comparison of conflicts with actual outcomes for validation 
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