
Comparison of Various Time-to-Collision Prediction
and Aggregation Methods for Surrogate Safety
Analysis

Paul St-Aubin, ing. jr, Ph.D. Candidate (Corresponding author)
Department of civil, geological and mining engineering
École Polytechnique de Montréal, C.P. 6079, succ. Centre-Ville
Montréal (Québec) Canada H3C 3A7
Phone: +1 (514) 885-7285
Email: paul.st-aubin@mail.mcgill.ca

Nicolas Saunier, ing., Ph.D., Assistant Professor
Department of civil, geological and mining engineering
École Polytechnique de Montréal, C.P. 6079, succ. Centre-Ville
Montréal (Québec) Canada H3C 3A7
Phone: +1 (514) 340-4711 ext. 4962
Email: nicolas.saunier@polymtl.ca

Luis F. Miranda-Moreno, Ph.D., Assistant Professor
Department of Civil Engineering and Applied Mechanics
McGill University, Macdonald Engineering Building
817 Sherbrooke Street West, Montréal, QC, H3A 2K6 CANADA
Phone: +1 (514)-398-6589
E-mail: luis.miranda-moreno@mcgill.ca

Word count: 5461 words + 7 figures + 1 tables

Date of submission: November 15, 2014



ABSTRACT
Surrogate safety analysis is the practice of diagnosing road safety by observation of ordinary traffic
behaviour instead of rare traffic accidents. While this proactive approach was first proposed in the
60’s, issues of subjectivity, transferability, and validity impeded the technique’s maturity. How-
ever, it has recently gained some renewed traction with the advent of sophisticated, large-scale,
microscopic data acquisition techniques solving some of the issues of objectivity, though the tasks
of improving model transferability and validity remain, with the exception of speed indicators,
which benefit from a large body of evidence linking them to road safety, especially collision sever-
ity. While trajectory measurement techniques have improved, the interpretation and definition of
dangerous traffic events still lags. Various competing safety indicators have been proposed and
tried, some more precise, objective, or context-sensitive than others.

This paper examines and reviews the definition and interpretations of time-to-collision,
one of the most ubiquitous and least context-specific surrogate safety indicators, for its suitability
as an indicator of dangerous traffic events. An important emphasis is put on motion prediction
methodology when defining time-to-collision, as well as aggregation methods of instantaneous
time-to-collision exposure. This analysis is performed using one of the largest trajectory data sets
collected to date for the purpose of surrogate safety analysis.

The study recommends the aggregation of instantaneous time-to-collision indicators by
15th percentile over the use of minimum values, highlights the context-dependency of constant
velocity motion prediction (particularly regarding car-following), recommends the use of motion
pattern prediction using trajectory learning, and examines sensitivity to traffic event ranking by
collision probability threshold.
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INTRODUCTION
Traditional methods of road safety analysis rely on direct road accident observations, data sources
which are rare and expensive to collect and which also carry the social cost of placing citizens at
risk of unknown danger. Surrogate safety analysis is a growing discipline in the field of road safety
analysis that promises a more pro-active approach to road safety diagnosis. This methodology uses
non-crash traffic events and measures thereof as predictors of collision probability and severity (1)
as they are significantly more frequent, cheaper to collect, and have no social impact.

Time-to-collision (TTC) is an example of an indicator that indicates collision probability
primarily: the smaller the TTC, the less likely drivers have time to perceive and react before a col-
lision, and thus the higher the probability of a collision outcome. Relative positions and velocities
between road users or between a user and obstacles can be characterised by a collision course and
the corresponding TTC. Meanwhile, driving speed (absolute speed) is an example of an indicator
that measures primarily collision severity. The higher the travelling speed, the more stored kinetic
energy is dissipated during a collision impact (2, 3). Similarly, large speed differentials between
road users or with stationary obstacles may also contribute to collision severity, though the TTC
depends on relative distance as well. Driving speed is used extensively in stopping-sight distance
models (4), some even suggesting that drivers modulate their emergency braking in response to
travel speed (5). Others content that there is little empirical evidence of a relationship between
speed and collision probability (6).

Many surrogate safety methods have been used in the literature, especially recently with the
renewal of automated data collection methods, but consistency in the definitions of traffic events
and indicators, in their interpretation, and in the transferability of results is still lacking. While a
wide diversity of models demonstrates that research in the field is thriving, there remains a need
of comparison of the methods and even a methodology for comparison in order to make surrogate
safety practical for practitioners. For example, time-to-collision measures collision course events,
but the definition of a collision course lacks rigour in the literature. Also lacking is some systematic
validation of the different techniques. Some early attempts have been made with the Swedish
Traffic Conflict Technique (7) using trained observers, though more recent attempts across different
methodologies, preferably automated and objectively-defined measures, are still needed. Ideally,
this would be done with respect to crash data and crash-based safety diagnosis. The second best
method is to compare the characteristics of all the methods and their results on the same data set,
but public benchmark data is also very limited despite recent efforts (8).

The objectives of this paper are to review the definition and interpretation of one of the
most ubiquitous and least context-sensitive surrogate safety indicators, namely time-to-collision,
for surrogate safety analysis using i) consistent, recent, and, most importantly, objective defini-
tions of surrogate safety indicators, ii) a very large data set across numerous sites, and iii) the latest
developments in automated analysis. This work examines the use of various motion prediction
methods, constant velocity, normal adaptation and observed motion patterns, for the TTC safety
indicator (for its properties of transferability), and space and time aggregation methods for contin-
uous surrogate safety indicators. This represents an application of surrogate safety analysis to one
of the largest data sets to date.
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LITERATURE REVIEW
Earliest Methods
The earliest attempt to implement surrogate safety analysis was manifested in the traffic conflict
technique (TCT). The TCT was conceived at General Motors in the 60’s (9) and was adapted
soon after in many different countries, particularly England (10, 11), Sweden (12), Israel (13), and
Canada in the 70’s and 80’s. The TCTs provide conceptual and operational definitions of traffic
events and safety indicators and methods to interpret the field observations for safety diagnosis.
TCTs allow to categorize traffic events by risk of collision according to a set of guidelines devel-
oped to train observers for field manual data collection. Unfortunately, these efforts have not fully
matured as several problems have persisted with reproducibility, non-transferability, subjectivity
of observations, and data collection cost (14, 15, 16, 17).

There has been some resurgence in the field lately (18), with efforts to modernize the tech-
nique by automating the data collection and analysis, particularly using video data and computer
vision (19). A variety of indicators and analysis methods have been proposed, however the field
faces the same problems of non-transferability of results without some level of reliability testing
(1, 20).

Safety Indicator Types
There is a wide variety of safety indicators presented in the literature (1). Too many, in fact,
for many of these indicators are often study-specific or site-specific and as such suffer from the
same problems of non-transferability and non-reproducibility as the TCTs. Instead, the following
indicators are proposed for their ubiquity in the literature and generalizable properties related to
all types of traffic behaviour in any traffic safety study of any type of road infrastructure:

• Speed requires no introduction as a behaviour measure as its effects on collision severity
are already well established and well researched in the literature (2, 3). However, its
usefulness as a predictor of collision probability is still questionable, with some in favour
(2, 3) and others against (6), and does not offer perfect transferability as geometric factors
and exposure come into play. We know that accident rates do not always scale linearly
with speed (3), e.g. when comparing highways and intersections.

• Time-to-collision (TTC), first proposed by (21), is an indicator describing the time re-
maining for two road users (or a road user and an obstacle) on a collision course to
collide. It relies on a motion prediction method. TTC is measured continuously and
can evolve over time if road users take evasive action and change collision course. The
dimension of TTC is time and it decreases over time at a one-to-one ratio if the initial
conditions of the collision course remain unchanged for lack of driver action or reaction.
As such, it is generally accepted in the literature as a potential substitute for collisions
resulting from driver errors and is typically proposed as a trigger for collision-avoidance
systems (22). Its interpretation is that lower TTCs are more likely to be associated with
a probability of collisions. In fact, a TTC of exactly 0 is a collision by definition. TTCs
can manifest themselves in virtually every type of driving scenario and as such are the
ideal candidates for transferability.

• Post-encroachment time (PET) is the time between successive arrivals at the same point
in space by two road users (23, 24). Interactions with a measurable PET are very common
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at intersections, but not necessarily in other environments (notably highways (25)), which
could make comparisons difficult between different classes of road infrastructure. While
PET is computed once for a pair of road users from observed trajectory data, predicted
PET is computed continuously based on motion prediction. As they share the same
dimension of time, PET has the same interpretation of safety as TTC, although possibly
not the same magnitude of impact.

Motion-Prediction Methods
TTC depends on robust motion prediction methods, i.e. the ability to predict possible future po-
sitions of moving objects according to a set of consistent, context-aware, and rigorous definitions
of natural motion. They typically explore situations, large and small, in which road users find
themselves on potential collision courses with others or obstacles, and measure the expected time
of arrival at the potential collision point. In the strictest sense, the collision of two moving bodies
predicted 10 or even 60 seconds into the future constitutes a collision course, however, such times
are so large that i) the prediction model is probably inaccurate, and ii) road users are more than
capable of correcting their course in this time.

A number of methods are employed in robotics, computer vision, and transportation ap-
plications to predict natural motion with various criteria such as accuracy, performance, effective
time horizon (26), but a few stand out for their suitability for surrogate safety modelling and recent
applications:

• Constant velocity is the most simple motion prediction model, wherein vehicles are
projected along straight paths at a constant speed and heading using the velocity vector
at that moment in time. This models simple Newtonian motion where no driver action
is applied to the motion of the bodies in reaction to some event or navigational decision
making.

This model is the simplest and most commonly used, often implicitly and without justifi-
cation, but it also makes the most assumptions: only one movement is predicted at every
instant (dependant on velocity vector), it does not depend on the context (road geometry
or traffic), and driver actions are assumed to be the only sources of forces acting on a
moving object (it does not account for friction or wheels already engaged in a rotation).
These assumptions may be adequate for specific applications of the methodology, e.g.
highways (25), but not all. The current implementation is based on (24).

• Normal adaptation uses the initial velocity vector at the prediction moment to project
trajectories, but modifies the velocity vector to account for normal driver variation iter-
atively from that initial velocity. This model is probabilistic and benefits from a wider
range of possible outcome velocity vectors, but otherwise suffers from dependency on
many of the same assumptions as the constant velocity prediction method. The imple-
mentation of normal adaptation studied is based on (27).

• Motion patterns are a family of models which use machine learning techniques to cal-
culate future position likelihoods from past behaviour (26, 28, 29). This type of model is
the most promising, as motion prediction is probabilistic in nature and inherently models
naturalistic behaviour. However, motion patterns are also more complex to implement
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and expensive to process, requiring training data encompassing the space where all col-
lision courses may occur. The type of motion pattern being studied for implementation
is a simple, supervised, discretized probability motion pattern matrix (30).

The source code for the calculation of all of these indicators is (or will be) available in the
open-source project “Traffic Intelligence” (31).

It should also be noted that motion prediction methods that take into account several paths
that may lead road users to collide also model collision probability (motion patterns particularly
and normal adaptation to a much lesser extent) and inherently make fewer assumptions. The
interpretation of the indicators based on these prediction methods is thus expected to shift away
from prediction accuracy and towards reaction probability and related mechanics.

Analysis Methods
While indicators are relatively straightforward to generate and some are highly generic, several
interpretation approaches have been proposed for safety analysis. This section highlights some of
the major ones.

Number of Traffic Events based on Thresholds
The core approach of the TCT is to count the number of most severe traffic event observations
defined in some capacity. Originally this was done with trained observers. Results were mixed
and not without some criticism (14, 15). Hyden performed some reliability tests of observers in
different cities and found positive results (7, 32), while others ran into difficulties (15). Some
efforts have been undertaken, with moderate success, to link dangerous traffic events with accident
rates. Some conversion factors for traffic event rates and accident rates have also been produced
(7, 32, 33, 34) but little research has been done about their transferability.

The approach applies a trigger threshold on one or more objectively measured safety in-
dicators. The literature frequently recommends a value of 1.5 seconds on temporal indicators, in
particular TTC (7, 35), as a surrogate for typical reaction times, although some have suggested
using values as high as 5.0 seconds for TTC and 12.0 seconds for PET (36). Some recent ef-
forts have attempted to choose a threshold to fit a distribution model, notably the use of a shifted
gamma-generalized pareto distribution as in (37).

Analysis of Indicator Distributions
Instead of categorizing traffic events as either dangerous or not dangerous according to some
threshold, this approach presumes that all indicator values produce different degrees of risk through-
out the safety continuum (38, 39, 40). This approach can be based on the distribution of the number
of events per unit of time for each level of the indicator, or its normalized density. It looks at shifts
in distributions in cross-sectional or before-after approaches: without some degree of quantifi-
cation, it can only offer conclusive results in some cases. If using the number of events or the
density function, it is conclusive where there is a systematically higher number of events for all in-
dicator values (39) or where "high risk" indicators clearly outweigh "low risk" indicators (25, 30)
respectively. This is a visual approach, unless some non-parametric statistical tests, such as the
Kolmogorov–Smirnov test, are performed in conjunction with the latter case.
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Time-Series Analysis
Time-series analysis looks at road-user interactions microscopically for evolutions of indicators
such as TTC , but also descriptive kinematic indicators such as distance and speed differential,
over the course of the interaction. This approach has been developed in (41) and aims at finding
similarities between interactions with and without a collision: the goal is to better understand
collision processes and identify interactions without a collision with a strong safety predictive
power.

METHODOLOGY
The Interaction Definition
How is an interaction defined? In the simplest definition, it is a pair of two road users existing
simultaneously and closely in space. To illustrate the constraints, a time snapshot of a series of
road users interacting at a roundabout merging zone (the scene) is presented in Figure 1. In this
example, road user B is physically separated from and cannot reach or be reached by all others,
except for A who may or may not exit the roundabout at this point in time. In addition, road user
B does not even cross the merging zone and is therefore not analyzed at all. A might cross the
merging zone while C, D, and E are or will be crossing it. However, A, D, and E lie outside the
motion prediction time horizon, so only interactions between A and C, C and D, and C and E are
considered at this time. The time horizon is calculated using the motion prediction employed.

The above example illustrates the methodology at an instant in time and describes interac-
tion instants. These road users are in fact interacting over several time steps, termed “user pair”
or simply “interaction”. Analysis of the evolution of indicators over these time steps is time-series
analysis.

Some other points should be mentioned:

• visual obstructions or distractions could affect the outcomes of indicators, by adding
noise or preventing road users from being partially or completely tracked.

• the region of analysis (i.e. camera space if obtained from video data) can have a bounding
effect on indicators. Because indicators are predictions, it is important that the analysis
area be completely enclosed by the camera space and that sufficient upstream distance be
provided for indicators to be generated at the merging zone.

• it is possible forC to obstruct the movement ofD in relation toA. These are special cases
involving interactions with more than two road users that will have to be handled in the
future, when the methodology matures with more sophisticated prediction methods.

Indicator Calculation
The time-to-collision calculations for constant velocity (24) and motion patterns (30) are per-
formed with no need for additional constants or parameters. For normal adaptation, the empirical
constants used in (27) are re-used, namely triangular distributions for acceleration and steering
with an acceleration range α of ±2 m/s2 and a maximum steering range σ of ±0.2 rad/s (these
ranges are empirical (27)).

In all cases of motion prediction, predictions are performed into the future no more than
a chosen time horizon. Indicators derived from motion prediction using time horizons above 10
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FIGURE 1 Spatial relationships for instantaneous interactions between five different road
users (seven user pairs) at a roundabout merging zone at a given instant in time.

seconds are generally ignored in the literature for two reasons: i) they produce indicators corre-
sponding to mostly uniform noise, and ii) are significantly larger than reaction times of all drivers
and so are of little value. Also, because motion-pattern prediction is based on observed behaviour,
it can only predict motion that falls within the space of observed behaviour. This adds a practical
time horizon constraint.

Indicator Aggregation
Indicators computed continuously for all interaction instants may be aggregated in various ways at
the user-pair level (over all interaction instants).

• The all indicators method treats every single instantaneous observation as an indica-
tor of safety. It has the advantage of generating large datasets and capturing continuous
behaviour to reduce errors from noise, but suffers from sampling bias and issues inter-
preting conditional probability. The sampling bias stems from oversampling of objects
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moving at slower speeds.

• The minimum unique method uses the most severe observation in the time series of
indicators, usually the lowest for temporal indicators. This approach solves the problems
with the previous approach, but assumes that dangerous traffic events occur only once per
user pair and is prone to outlier effects from noisy data and instantaneous tracking errors.
This technique is identical to the principle of TTCmin commonly used in the literature
(21, 42).

• The 15th centile unique method is identical to the minimum unique method but proposes
using a centile of the indicator values over time instead of a minimum in order to be more
robust to the effects of noise and instantaneous tracking errors.

Indicator Thresholds
The classic TCT method is examined by comparing consistency of site risk ranking of traffic
events corresponding to threshold criteria for various motion prediction and indicator aggregation
methods.

The criteria examined in this paper are based on the traditional time-to-collision interpre-
tation of the 1.5 s human reaction time (7). In addition to indicator aggregation, events can be
reported by probability

P (Ui,j,indagg<indthreshold) =

∑
[Ui,j,indagg<indthreshold ]∑

[Ui,j]
(1)

where Ui,j is a time series of interaction instants between the same two road users i and
j, indagg is the representative indicator (TTCmin or TTC15th in this case) of the user pair’s time
series according to the chosen indicator aggregation method and indthreshold is a chosen maximum
indicator criterion, in this case indthreshold = 1.5 s. This may be useful for comparison with
accident rates. Events may also be reported simply by hourly counts. This approach is sensitive to
exposure, and may be a better predictor of expected accidents over time.

A secondary constraint for motion-pattern prediction is also put in place during modelling.
Motion pattern prediction creates a probabilistic spectrum of collision events. The indicator alone
isn’t sufficient to describe the event. The event criteria need to be expanded to take into account
the modelled collision probability criteria because motion patterns will generate many more col-
lision points than constant velocity motion prediction, only with smaller collision probabilities.
Equation 2 is adapted accordingly for motion prediction using a prediction continuum:

P (Ui,j,indagg<indthreshold) =

∑
[Ui,j,indagg<indthreshold

⋂
P (collision)>pthreshold ]∑

[Ui,j]
(2)

where P (collision) is the total probability of predicted collision at the indicator’s instant
determined by the aggregation method and where pthreshold is the desired minimum probability
of collision at that instant in time. For this work, we choose pthreshold = 0.001 as a control
case arbitrarily and compare its performance with pthreshold = 0.01. An attempt at accident-rate
modelling should calibrate this parameter accordingly or remove it entirely by incorporating a
calibrated collision prediction.
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Indicator Distributions
Assuming some association between TTC and collision probability, qualitative safety comparisons
can be made between density functions of indicators when the direction of shift in weight (safety
impact) of a density function cannot be governed by the individual weight (safety impact) of that
indicator (e.g. TTC). This occurs when probability density functions intersect exactly once, or their
corresponding cumulative distribution functions do not intersect at all. For example, if TTC follows
a gamma distribution, this occurs when either the scale or the shape parameters are conserved.

The principle of this analysis is demonstrated in Figure 2. Two different control cases for
two options are presented, each with their corresponding probability and cumulative distribution
functions. In the first case, all high-risk behaviour (low TTCs) is shifted towards low-risk behaviour
(high TTCs), resulting in a non-ambiguous gain in safety for one of the two options, assuming
TTC is associated with safety. The gain is however not quantified. In the second control case,
some high-risk behaviour (low TTCs) and low-risk behaviour (high TTCs) is shifted towards the
middle. Results are therefore inconclusive without quantifying collision probability of individual
TTC observations.

EXPERIMENTAL RESULTS
Data Source and Size
Video data was collected at 1 to 3 merging zones at 20 different roundabouts of varying land use
across the province of Québec for a total of 37 different sites. Video was shot using a purpose-
built mobile video data collection system designed for temporary, high-angle video data collection,
with tamper-proof, weather-proof, self-contained cameras mounted at a height of 3.5 to 10.5 metres
(31). Vehicle trajectories are extracted frame by frame (position and speed 15 times per second or
more) using established computer vision techniques applied to traffic analysis (26, 43), available
in the opensource “Traffic Intelligence” project (31).

In addition to regional variation among the 20 roundabouts, each of the 37 merging zones
varied by lane configuration, geometry, traffic volumes, and flow ratios. The merging zone of the
roundabout is defined as the portion of the roundabout ring intersected by an approach and the
following exit, and the area proper is the area where the approach and exit lanes overlap with the
ring. There is generally one merging zone between every pair of adjacent branches, unless one of
these branches does not have an approach (these cases are rare and not included in the study). The
flow ratio is defined as

Flowratio =
Qapp −Qin

Qapp +Qin

(3)

where Qapp is the total flow rate at the approach and Qin is the total flow in the roundabout
lanes at the beginning of the merging zone. Video data at each site was taken on a mild summer
workday from 6 AM to 7 PM or 10 PM, which captures both peak traffic hours (25). In total, the
dataset analyzed in this paper constitutes 359.5 hours of data comprising 79,432 vehicles driving
a combined distance of 9505.97 veh-km. It follows that the amount of user pairs generated at
each site are highly dependant on overall flow ratio (traffic mixing) and absolute traffic volumes
(Poisson arrivals). See Table 1 for details.

TTCs are computed for all pairs of road users using constant velocity, normal adaptation,
and motion pattern motion prediction methods.
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TABLE 1 Data details
Rank Duration

(h)
Flow
(veh/h/ln)

User Pairs per
hour (up/h)

Total vehicle kilo-
metres per hour

Flow Ratio

1 9.5 372 501 20.3 -0.67
2 6.0 309 472 15.1 0.30
3 10.2 446 702 29.2 0.20
4 10.7 354 817 29.0 -0.15
5 10.6 186 216 11.6 -0.20
6 13.2 132 264 17.7 -0.02
7 10.4 89 28 5.0 0.95
8 7.9 263 578 54.3 -0.37
9 10.5 132 205 13.8 0.00
10 10.6 103 226 17.4 0.26
11 10.0 116 286 14.3 0.08
12 10.6 345 685 44.0 -0.38
13 3.0 177 5549 14.3 0.92
14 5.6 78 170 6.6 0.58
15 14.8 95 468 42.3 0.62
16 9.4 91 42 4.2 -0.83
17 9.7 131 98 8.6 0.59
18 6.5 453 1417 35.3 -0.36
19 5.0 137 1653 61.1 0.84
20 2.9 151 480 21.2 -0.55
21 6.0 534 1954 43.8 -0.25
22 8.2 263 356 14.3 -0.21
23 11.1 75 441 7.3 0.72
24 11.8 153 4971 39.7 0.82
25 10.4 193 706 18.1 0.57
26 10.8 359 2222 22.1 -0.49
27 13.9 125 743 25.1 0.71
28 14.0 246 1852 67.4 -0.22
29 9.4 138 456 20.2 -0.22
30 13.6 101 963 8.0 -0.41
31 12.8 182 358 12.1 0.60
32 10.5 225 447 15.4 0.38
33 3.8 53 24 2.0 0.65
34 10.5 68 57 4.3 0.07
35 13.0 51 10 2.3 0.76
36 10.5 51 27 3.2 -0.15
37 12.1 53 95 7.0 0.27
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FIGURE 2 Density function comparisons for two different control cases. In figures (a) and
(b), probability and cumulative distribution functions respectively, for a case study between
two options, one of the options demonstrates a shift to safer behaviour. In the second control
case, illustrated in the probability and cumulative distribution functions of (c) and (d) respec-
tively, the benefits of one of the options are more ambiguous without quantitative knowledge
of the impact of TTC on collision probability.

Comparison of Traffic Events by Threshold
Sites are ranked for comparison using the Traffic Events Threshold analysis, as is demonstrated in
the event frequencies of Figure 3. In this case, pthreshold = 0.001 and iThreshold = 1.5 s, while sites
are ranked according to constant velocity motion prediction, with a TTC indicator aggregated by
unique 15th percentile. Sites ranked with the highest event frequencies are indicative of the most
danger for drivers.

Aggregating TTC indicators by unique minimum was also attempted, but it yielded essen-
tially similar results for all motion-prediction models. Unique minimum was consistently 10 %
larger, and more sensitive to outliers, and is not shown for the sake of figure clarity. Constant
velocity and normal adaptation prediction methods yield essentially similar rates and similar rank-
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ings, but motion patterns do not appear to follow this ranking. In six of the cases, motion-pattern
prediction yields results similar to the other motion prediction methods, but, for the remaining
sites, it generates significantly more events in the 0.01-0.1 range. Sites # 2, 10, and 15 have abnor-
mally high event frequencies (close to 1.0). The only common factor among these sites is that they
are subject to large speed differentials between mixing flows, which may explain the observation.
It remains to be seen if this correlates with increased real collision probability.

Overall, the average and median dangerous event generation rates are about 2.1 % and
1.3 %, respectively, for constant velocity, while the average and median dangerous event genera-
tion rates for motion patterns are 0.125 and 0.054, respectively. Some validation will be necessary
to see if motion patterns are more sensitive to real collision potential or if the prediction method
is a little too aggressive. Overall, variation in event frequencies varies by three orders of magni-
tude. Some of the higher constant velocity and normal adaptation rates may be under-sampled,
generating less than 100 user pairs of interactions. This is common in roundabouts situated in low-
density residential areas where flows are low, but approach speeds are high as users may become
accustomed to not yielding.

In comparison, Figure 4 plots the hourly traffic events in relation to the hourly user pairs.
Traffic events and user pairs are between one and two orders of magnitude apart (at the high end
and low end respectively). Site ranking persists in this figure as the discrepancy between hourly
events and user pairs.

FIGURE 3 Log plot of traffic event frequency compared with hourly user pairs as defined
by the event threshold criteria. Sites are ranked by constant velocity event frequency.

A comparison of collision probability threshold is also performed on motion patterns and
demonstrated in Figure 5. Constant velocity yields a consistent, though relatively rare, colli-
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FIGURE 4 Log plot of hourly traffic events compared with hourly user pairs as defined by
the event threshold criteria. The site ranking is consistent with the previous ranking.

sion probability of exactly 1.0 (a single collision point), while normal adaptation yields any-
where between 1 to 100 collision points with sum of probability of collision of 1.00. They are
both therefore ignored. For clarity of comparison, the sites have been reordered by motion pat-
tern, using the unique 15th percentile indicator aggregation and thresholds pthreshold = 0.001 and
iThreshold = 1.5 s. In comparison, a pthreshold = 0.01 yields important decreases in the number of
hourly events reported, and, more importantly, changes site ranks.

Comparison of Cumulative Distributions of Indicators
As depicted in Figure 6, unique minimum values have the problem of over-representation of low-
TTC outliers (especially in the the 0-0.25 s TTC range) due to data noise and possibly instantaneous
tracking errors. The effect seems slightly worse for motion pattern prediction, which does add a
second layer of discretization to the analysis. Unique 15th percentile generally corrects this error.

Overall, normal adaptation offers little benefit over constant velocity. Meanwhile, the in-
crease in low TTC detection can be seen for all indicator aggregation methods.

Finally, sites are clustered by geometric and built-environment similarity in Figure 7 to
illustrate some minor discrepancies in interpretation, although not nearly as prominent as in the
case of site ranking by event thresholds. Most prominently, following the methodology outlined
in 4.5, interpretation of cluster _cl_1 changes significantly between aggregation and prediction
methods, while the interpretation of cluster _cl_5 changes according to the prediction method.
The interpretation of the other clusters are mostly unaffected.
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FIGURE 5 Log plot of hourly traffic for motion patterns at each site comparing different
pthreshold.

CONCLUSION
Overall, this paper discusses and demonstrates the sensitivity of different surrogate safety analysis
models and the importance of strong and objective definitions. While this paper did not tackle the
issue of validation using accident data, nor did it compare indicators across different types of road
infrastructure, it takes the first step in the direction of suggesting improvements to surrogate safety
analysis by comparing and contrasting several different models and analysis techniques on one of
the largest datasets to date. More importantly, the site rankings show how results are sensitive
to small differences in indicator reporting and analysis methodologies, particularly spatial and
temporal aggregation, and thus the importance of robust, consistent, and well documented use
of indicator measurement and analysis. This is somewhat less the case for clustered analysis by
geometric factors.

Normal adaptation does not seem to add significant benefits over constant velocity, at least
for roundabout site diagnosis. Less context-dependent motion prediction techniques such as mo-
tion patterns are recommended overall—these should be more feasible as computing power and
data collection equipment (high-quality cameras in particular) become more accessible. The in-
trinsic properties of motion patterns (i.e. better adapted for turning movements and fewer assump-
tions about driving behaviour) lend themselves better to transferability over methods based off of
constant velocity, but remain to be fully validated as a predictor of collision probability.

To further transferability of safety indicators, future work must compare results across data
sets of multiple types of road infrastructures, not just roundabouts: urban and rural highways,
interchanges, intersections, collector roads, etc. For the immediate future however, validation is
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FIGURE 6 TTC cumulative distributions aggregation and prediction method comparisons.

the next step.
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