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ABSTRACT 

Surrogate safety analysis is the process of diagnosing road safety indirectly from measures of 

ordinary (non-collision) road user behaviour, such as absolute speed and time-to-collision. While absolute 

speed has enjoyed much popularity in the literature, other measures such as time-to-collision are currently 

under developed. Before conflict measures such as time-to-collision can be adopted, several challenges 

need to be overcome, notably the problem of accurately modeling collision courses and collision probability 

from normal road user behaviour. 

This paper describes and explores the feasibility of implementing discretized motion pattern maps 

for the purpose of predicting potential collisions between road users and their measures based on an 

empirical naturalistic behaviour model calibrated from site-specific data for use in surrogate safety analysis. 

The methodology is applied to a pre-existing framework which extracts road user trajectory data from video 

data of a traffic scene, and then predicts and estimates potential collisions. 

To this end, this paper examines the motion pattern model discretization process, the probabilistic 

framework, the resulting indicators, and then compares the motion prediction methodology with that of the 

classical constant velocity motion prediction methodology. The methodology is explored using road user 

behaviour inside the weaving zone of a roundabout to illustrate the flawed use of constant velocity motion 

prediction.  
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INTRODUCTION 

Traffic conflicts are classically understood to be traffic events in which two or more road users 

(motorists, cyclists, pedestrians, etc.) enter some collision course containing some meaningful potential for 

collision. The majority of these collision courses are benign as users are given the opportunity to correct 

their course. However, when course correction fails, the collision course prediction is realised and a 

collision ensues.  Course correction failure might be attributed to any number of causes; the broadest of 

these categories include: a) environmental causes, b) vehicular mechanical failures; or c) user control 

failures, i.e. a failure to avoid an obstacle. Furthermore, some of these factors might overlap, for example: 

a situation in which a mechanical failure causes a road user to lose control and a second vehicle fails to 

react in time. As these factors are complex and difficult to record (despite several attempts, notably (1)), 

methods for surrogate safety analysis aim to substitute these factors empirically in order to detect and 

characterize the potential for collisions among ordinary traffic events.  

The core concept of a traffic conflict, and it can be argued any safety-related traffic event, is the 

collision course, i.e. a situation at some instant(s) where, if a road users fails to correct their current course, 

they are expected to collide in the future with either another road user or some other roadside obstacle. For 

example: a road user is distracted and fails to correct a collision course in time for a collision with a 

pedestrian to occur. The general hypothesis of the surrogate safety methodology is that surrogate safety 

measures can be designed with predictive power such that the expected number of collisions can be 

estimated from non-collision traffic observations. One of the best known surrogate safety measures is the 

temporal proximity to a collision, namely time-to-collision (TTC). TTC is especially useful in the context 

of road user behavior as it shares the same dimension as distraction time, reaction time, breaking time, etc. 

This however leaves the problem of properly predicting uncorrected motion and detecting collision courses. 

This aspect will be the focus of the remainder of this paper. 

The classical approach to this problem assumes that the natural motion of a vehicle which has no 

control input is one simply undergoing Newton’s first law, that is, one undergoing zero significant net force 

(no acceleration and no change in heading) (2). In such a scenario, a collision would occur if both road 

users failed to correct their course vector in the time, i.e. TTC, it takes to arrive at a collision point defined 

by motion prediction at a constant velocity. However, outside of certain ideal situations, such as road users 

traveling in straight, isolated highway sections (3) and simultaneous loss of control/failure to initiate evasive 

action by both road users, collision courses predicted using constant velocity make some limiting 

assumptions about naturalistic motion paths of road users. 

For example, in a curved road section, the distraction or the slow reaction time of a road user does 

not necessarily translate to a tangential exit path from the roadway. In fact, a distraction, for example, might 

even lead a road user to fail to exit an ongoing turning manoeuvre which otherwise might lead to some 

collision. Furthermore, even in the event that an operator is no longer in physical contact with the controls 

of a vehicle, road vehicles do not behave as frictionless particles. 

As such, a more naturalistic model is needed to meet the needs of motion prediction. However, 

because naturalistic motion paths are complicated and possibly unique to a given environment, an 

appropriate solution is needed to learn the site-specific motion patterns of road users. This is an active field 

of research in the field of robotics (see the review in (4)). Motion patterns are used to make automated 

choices adapted to a specific environment through learning, especially for spatial tasks such as path finding 

and classification from image data. 

This paper explores the application of motion patterns by first attempting a basic learning process on 

a sample of 12-hours of traffic data (a full week day of typical, moderately heavy traffic flow) and then 

applying the motion pattern to collision prediction and computation of the surrogate safety measure time-

to-collision. The results are then compared with the naïve method of motion prediction at constant velocity. 
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BACKGROUND 

Previous vehicle trajectory prediction used simplifying assumptions about naturalistic road user 

behaviour to model deterministic behaviour (prediction at constant velocity) or made use of objective-based 

prototypes. As mentioned before, constant velocity is a staple of the surrogate safety methodology for 

estimating time-to-collision, and traces its roots all the way back to the earliest implementation of the traffic 

conflict technique which measured traffic conflict events via trained observers (2) (5). Prototypes are 

frequently used to describe objective-based spatial tasks, often scene entrance and exit tasks. Examples of 

prototypes applied to traffic scenery include Baiget et al. who measured origin and destination points of 

outdoor pedestrians in a traffic scene (6) and Saunier et al. who used motion patterns to form prototypes 

for turning decisions inside of traffic intersections (7). 

Mohamed and Saunier recently implemented more sophisticated methods stemming from the field 

of robotics and vision including normal adaptation which accounts for naturalistic variability between 

velocity vectors and evasive action, as well as variations on the collision detection algorithm (4), itself 

inspired from Broadhurst et al.’s modeling of control inputs (8). 

Motion patterns have been relatively well developed in the field of Robotics as they describe 

naturalistic trajectory patterns from normal behaviour, including user trajectories. Motion patterns are 

frequently described in a number of ways, including prototypes, discrete maps, and probabilistic models 

such as hidden Markov models (HMM). A very popular approach to learning these motion patterns is by 

using the Expectation-Maximisation (EM) algorithm (9). Motion patterns are frequently implemented in 

traffic scenes, though typically in contexts outside of road safety, or frequently concerning image 

processing (trajectory extraction). For example, Gryn et al. use motion patterns and direction maps to 

construct turning ratios in a scene from traffic video data (10). Bennewitz et al. use motion patterns from 

laser-based detection to model motion of pedestrians inside of a building (11). 

Morris and Trivedi have extensively reviewed motion patterns and trajectory path models and 

discussed the capability of trajectory prediction as well as collision prediction from learned behaviour (12). 

Paths are defined as one or a multiple of three type: i) centroid, ii) envelope, or iii) sub path models. 

 

METHODOLOGY 

Motion Pattern Learning 

The objective of the model is to predict the destination probability of road user A at a given point 

𝑥, 𝑦 after ∆𝑡 time from the time of origin 𝑡𝑜 (event 𝐴𝑥𝑖,𝑦𝑖,𝑡𝑖
), according to any set of additional initial 

conditions at the time of origin 𝑡𝑜 (including speed, traveling lane, road type and spatial origin 𝑥𝑜, 𝑦𝑜). This 

is illustrated in Figure 1a and formally defined in equation ( 1 ): 

𝑃(𝑥𝐴 = 𝑥𝑖 , 𝑦𝐴 = 𝑦𝑖 , 𝑡𝑖 =  𝑡𝑜 + ∆𝑡) = 𝑃(𝐴𝑥𝑖,𝑦𝑖,𝑡𝑖
) = 𝑓(𝑥𝑜, 𝑦𝑜 , 𝑜𝑡ℎ𝑒𝑟 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑡𝑜)  ( 1 ) 

 In order to calibrate this model numerically from the data set, discretized motion patterns are 

learned from the trajectory data of all road users at a given site with a first analysis. The motion patterns 

are multi-dimensional matrices of variable size, set according to the initial conditions being learned and the 

desired prediction precision and accuracy afforded by the sample data. Each dimension of the matrix 

represents the range of a single initial condition. A multi-dimensional initial condition, such as 2D 

Euclidean space, is represented by multiple discretized dimensions. The core dimensions are the destination 

probability for position at x and y, discretized over 𝑠𝑥 and 𝑠𝑦 steps, representing the learned probability of 

the spatial position of vehicles, over the dimension of time flow ∆𝑡 after the time of origin 𝑡𝑜, itself 

discretized over 𝑠𝑡 steps, usually using a step size of 1/30th to 1/15th of a second, depending on the data 

sample rate. These represent the probability of a user arriving at a point at 𝑥, 𝑦, and in 𝑡. 
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These probabilities of arrival are formed by evaluating the frequency of observed arrivals of all road 

users over 𝑥, 𝑦, and 𝑡 corresponding to a set of initial conditions. The most basic initial conditions include 

speed, lane, spatial origin (using 𝑥, 𝑦, or curvilinear distance along the lane’s center alignment), and road 

user type. More advanced initial conditions to use for learning could include vehicle type, lane drift, known 

route (scene destination or scene origin or both), vehicle following conditions, and presence of other 

constraining vehicles, among other factors. Initial conditions are discretized as well. Initial condition ranges 

used for these discretized motion patterns are given in Table 1. The curvilinear distance in this case is a 

spatial measurement along the center line of a given lane and is used to reduce the dimensionality of the 

model and the amount of superfluous learning which that would entail. 

Table 1 – Discretization ranges used for the motion pattern learning for this case study. 

 Lane 

Identifier 

Curvilinea

r Distance 

Speed Time Horizon Destination X Destination Y 

Discretization Linear Linear Centile Linear Linear Linear 

Steps no. of lanes Variable 10 Maximum dwell time 60 60 

Step Size 1 lane 3 m Variable 1 frame 1 m 1 m 

 

For continuous measures such as speed and spatial positioning, a sufficiently small step size is needed 

to obtain precise predictions. If, for example, the step size of the spatial initial condition is larger than the 

average distance between the centroid of two road users, and other initial conditions remain the same, then 

destination predictions will begin to artificially overlap, when in reality following behaviour is occurring. 

Given a fixed amount of data, however, increasing the prediction precision decreases the prediction 

accuracy as the sample size per bin for the initial conditions decreases. Because each prediction is made 

using a sample of observations with similar initial conditions, every additional dimension or increase in 

precision increases the size of the motion pattern matrix and decreases the sample size of each individual 

prediction, so a balance needs to be struck between desired prediction accuracy and prediction precision. 

Furthermore, prediction matrices become increasingly larger as initial condition complexity grows. 

Fortunately, this increase in matrix size can be managed to a certain degree using sparse matrices, 

particularly because as position prediction accuracy increases, the number of cells with non-zero spatial 

probability decreases. 

Furthermore, sample sizes may be spread unevenly across dimensions that are not evenly distributed, 

leading to undersampling of some initial condition states (notably speed outliers). One strategy is to use 

centile discretization such that samples are evenly distributed according to a percentile. While this increases 

the prediction accuracy of outlier initial condition states, it tends to reduce precision as the similarity criteria 

between some initial condition states become stretched. Ultimately, collecting a sufficiently large data set 

is the solution to both problems simultaneously. 
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a) b) 

Figure 1 – Motion pattern maps for two road users demonstrating the probability of arrival for vehicles A 

and B in x y space for two successive timesteps: a) no arrival probability overlap, and b) arrival probability 

overlap with a collision (joint) probability of 𝑷(𝑨𝒙𝒊,𝒚𝒊,𝒕𝒊
) × 𝑷(𝑩𝒙𝒊,𝒚𝒊,𝒕𝒊

).  

Collision Detection 

We denote the collision event between road user A and road user B, which coexist in the scene over 

a common time interval, as AB. The probability of collision at a given point 𝑥𝑖, 𝑦𝑖 after ∆𝑡 time from the 

time of origin 𝑡𝑜 (illustrated in Figure 1b) is thus the joint probability of the individual destination events 

of either road user which are assumed to be either independent or already factored by the motion prediction 

(this independence should not be confused with road user interaction dependency, e.g. spatial awareness). 

That is, if the two events are independent, the joint probability is given by ( 2 ): 

𝑃(𝑥𝐴 = 𝑥𝐵 = 𝑥𝑖 , 𝑦𝐴 = 𝑦𝐵 =  𝑦𝑖 , 𝑡𝑖 = 𝑡𝑜 + ∆𝑡) = 𝑃(𝐴𝐵𝑥𝑖,𝑦𝑖,𝑡𝑖
) = 𝑃(𝐴𝑥𝑖,𝑦𝑖,𝑡𝑖

) × 𝑃(𝐵𝑥𝑖,𝑦𝑖,𝑡𝑖
) ( 2 ) 
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Figure 2 – Probability of collision at a given position (x,y) as a function of time. 

The future collision at a single point for a single interaction at 𝑡𝑜 is thus the union of future collision 

events AB throughout the dimension of predicted time ∆𝑡 as illustrated in Figure 2 and demonstrated in 

equation ( 3 ). It should be noted that individual collisions are not temporally independent events. As such, 

the approximation, which is the summation over all predicted time of all collision probabilities estimated 

at that point, is an upper bound on the collision probability at this point, and might yield a probability greater 

than 1 or otherwise overestimate the probability in situation where the intersection of two or more collision 

events for the same pair of users is significant. 

𝑃(𝐴𝐵𝑥𝑖,𝑦𝑖,𝑡𝑜
) = 𝑃 ( ⋃ 𝐴𝐵(𝑥𝑖,𝑦𝑖,𝑡𝑖)

𝑡𝑖𝑚𝑒ℎ𝑜𝑟𝑖𝑧𝑜𝑛

𝑡𝑖=𝑡0

) ≈ ∑ 𝑃(𝐴𝐵(𝑥𝑖,𝑦𝑖,𝑡𝑖))

𝑡𝑖𝑚𝑒ℎ𝑜𝑟𝑖𝑧𝑜𝑛

𝑡𝑖=𝑡0

  ( 3 ) 

The total probability of the event at 𝑡𝑜 is similarly given by equation ( 3 ) : 

𝑃(𝐴𝐵𝑡𝑜
) = 𝑃 (⋃ ⋃ 𝐴𝐵(𝑥𝑖,𝑦𝑖,𝑡𝑜)

𝑦𝑛

𝑦=0

𝑥𝑛

𝑥=0

) ≈ ∑ ∑ 𝑃(𝐴𝐵(𝑥𝑖,𝑦𝑖,𝑡𝑜))

𝑦𝑛

𝑦=0

𝑥𝑛

𝑥=0

  ( 4 ) 

∆𝑡 is the time-to-collision (TTC) value for any collision event at that point in time, i.e. if the 

probability of collision is non-zero at that future time 𝑡𝑖. However, it is also useful to compute the expected 

TTC over all predicted times. As such, the expected TTC at a given point is given by equation ( 5 ) while 

the weighted TTC for the entire interaction at 𝑡𝑜 is given by equation ( 6 ). 

𝑇𝑇𝐶 (𝑥𝑖,𝑦𝑖,𝑡𝑜) =
∑ (𝑃(𝐴𝐵) (𝑥𝑖,𝑦𝑖,𝑡𝑖) × (𝑡𝑖 − 𝑡0))𝑡𝑖𝑚𝑒ℎ𝑜𝑟𝑖𝑧𝑜𝑛

𝑡𝑖=𝑡0

∑ 𝑃(𝐴𝐵) (𝑥𝑖,𝑦𝑖,𝑡𝑖)
𝑡𝑖𝑚𝑒ℎ𝑜𝑟𝑖𝑧𝑜𝑛
𝑡𝑖=𝑡0

 ( 5 ) 

 

𝑇𝑇𝐶 (𝑡𝑜) =
∑ ∑ 𝑃(𝐴𝐵) (𝑥𝑖,𝑦𝑖,𝑡𝑜) × 𝑇𝑇𝐶 (𝑥𝑖,𝑦𝑖,𝑡𝑜)𝑦𝑥

∑ ∑ 𝑃(𝐴𝐵) (𝑥𝑖,𝑦𝑖,𝑡𝑜)𝑦𝑥

 ( 6 ) 

This model works reasonably well for collisions between particles, or if at least each road user can 

be contained within a bin in the destination space, but in general vehicles and other road users are volumetric 

objects that occupy more than one point of space at a given time. As such, a true collision event is in fact 
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the union of multiple collision point events representing the individual points of contact of either road user. 

The error in this simplification is limited, for one, by the discrete nature of the motion pattern which already 

represents a large portion of the road user, and secondly, by approximation of the union probabilities which 

tend to converge toward a bounded answer according to the inclusion–exclusion principle of probability. 

In other words, the error is considered trivial at this stage. 

 

EXPERIMENTAL RESULTS 

The sample analysis is illustrated using data from a reference roundabout site which has previously 

had its trajectories extracted using video tracking (13). The geometry, the field of view, and the sample 

trajectories can be seen in Figure 3. The sample data at this site consists of 17,600 vehicles over a period 

of 12 hours during regular operating hours of a typical week day. Over 4 million data points (individual 

positions) were observed at a rate of 1 observation per road user per frame, at 15 frames per second, for a 

median dwell time of about 7 seconds inside of camera space.  

The site used is the weaving zone at one approach of a single-lane roundabout and was chosen to 

illustrate the application of the methodology as it is a prime example of road user behaviour actively 

engaged in movement characterized by non-constant velocity. 

 

 
Figure 3 – Sample site trajectory data (ground plane projection) and camera view for sample site A. The road 

center alignment is marked and the lanes labeled, as is the analysis area which defines a region of camera 

space suitable for study (removal of tracking and warm-up errors). 

Figure 4 presents a slice of the motion pattern. The figure plots the sample space for the learned 

arrival probabilities across 𝑥, 𝑦 (1.5 m by 1.5 m) after a ∆𝑡 of 60 frames (4 s) associated with road users 
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matching a particular set of initial conditions including a speed of between 16.2 km/h and 21.6 km/h, a 

curvilinear origin of between 5.94 and 8.9 m and located on align_1. The probabilities of this figure are 

exhaustive; in other words, there is a 100 % calculated chance that the future position will be located in this 

graph after ∆𝑡 time. The full motion pattern consists of a sample space for each ∆𝑡 timestep and each 

combination of initial condition. There are thousands of these combinations. The sample for this particular 

set of initial conditions is composed of 292 observations of road users matching the initial conditions and 

the highest cell density is 15 observations. The distribution of these sample sizes is generally logarithmic. 

A small number of sample spaces have over a thousand observations, while a larger number sample spaces 

have a few dozen. Fortunately, sample spaces with a low number of observations are composed primarily 

of outliers. The variability in the distribution of sample spaces (prediction accuracy) can be mitigated by 

choosing centile discretization at the expense of introducing variability in prediction precision. 

 
Figure 4 – Arrival probability in 𝒙, 𝒚 for a ∆𝒕 of 60 frames (4 seconds) for a signle road user according to a set 

of initial conditions.  

For this exercise, the constant velocity motion prediction methodology (reusing the computing 

function formulated and used in (4)) is compared to the motion prediction methodology based on learned 

motion pattern. Figure 5 illustrates the spatial distribution and density of collision points predicted with 

both methodologies. As expected, collision points have shifted away from the point of intersection of 

constant velocity collision courses of road users entering the scene (which actually appears to be positioned 

before the weaving zone). The collision points using the motion pattern methodology are now clustered 

near the approach yield line, where road users must stop to allow passage of other road users already 

engaged inside the roundabout, and a little bit after the weaving zone. The distribution also appears less 

artificial and concentrations of smaller TTC’s (below 1.5) seem more meaningful. 
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Of special note is the large density of expected collision points near both exiting branches of the 

roundabout (top half of the motion pattern graphs). This is explained by the choice to not use a posteriori 

knowledge of the intended destination of each road user in the motion pattern learning function. If motion 

patterns predict exclusively according to known intended destination, they may not be able to simulate 

situations in which the destination is unknown or hypothetical. However, if the destination is not modeled, 

there may be oversampling of unrealistic motion. This parameter will therefore have to be calibrated. 

Finally, it should be noted that conflicts can only be detected within camera space as the motion 

pattern cannot learn and predict movements outside of the study area, as opposed to constant velocity that 

can predict conflicts to infinity. While temporally distant conflicts tend to be of little predictive value, this 

can cause oversampling of interaction probability according to sampling exposure. As such, a per-vehicle 

pair approach to aggregating data is generally preferred. 
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Figure 5 – Collision point density maps for the sample site according to the value of TTC at those points and 

the motion prediction method used. In all plots, the roundabout lane starts from the bottom left leg, while the 

approach starts from the bottom right leg. Vehicles leaving the weaving zone continue inside the roundabout 

from the top-left leg, while vehicles exiting the roundabout leave using the top-right leg. Overall, the flow of 

vehicles is from bottom to top. 
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Figure 6 compares the distribution of TTC observations for both methodologies according to three 

aggregation methods: i) all instantaneous measures, ii) 15th percentile per unique pair of road users (i.e. set 

of interactions), and iii) minimum value per unique pair of road users. The principle behind aggregating by 

unique pair of road users is to account for biasing effects of the limited sample space and exposure from 

variable dwell time and location, as well as to keep the link between events without a collision and collisions 

(one pair or road user may lead to only one collision). Using the minimum value seems theoretically 

preferable as this samples the most dangerous interactions. However, as illustrated in Figure 6, minimum 

interaction values are oversampled with unrealistic low measures (up to 15 % of TTC measures below 0.25 

seconds), likely biased from outliers and errors. Instead, a centile can be used to capture TTC measures 

which are unusually low, but not so low that outliers become oversampled. This generally yields results 

more consistent with previous research. Finally, the method of aggregation can be decided when it comes 

time to validate the model and correlate TTC measures with accident probability. 

  

a) Motion Pattern b) Constant Velocity 

Figure 6 – Distribution of TTC observations by collision prediction method. 

 

CONCLUSION  

This paper reviews and demonstrates the feasibility of the motion pattern motion prediction 

methodology and compares it with the classical constant velocity motion predication methodology. While 

validation with accident probability (observed accident rate) remains a long-term goal for surrogate safety 

measures, this paper does demonstrate the usefulness, applicability and feasibility of a more naturalistic 

and empirical approach to road user motion prediction learned from scene behaviour data. The expected 

location of collision points predicted using motion prediction based on motion pattern were satisfactory for 

vehicles, given the sample size used for the motion pattern learning, though additional testing will be 

required to verify if the methodology can expanded to predict pedestrian trajectories. The model was not 

perfect however. Some issues were uncovered with processing time which diminishes the practical 

usefulness of the methodology at this time, and prediction accuracy remains a trade-off with prediction 

precision, or otherwise, the method requires a significant amount of data. However, it might be interesting 

to investigate this method using data collected over several days or weeks. 

It was found that the precision provided by the discretization ranges constitutes the bare minimum 

for satisfactory driving behaviour modeling. Yet the model will need to be expanded with additional 

parameters (and potential collision factors) such as lane drift, short term acceleration trends, and proximity 

to other drivers which may be of particular interest. Such an endeavour will likely require more calibration 

data. It would also be very interesting to compare motion patterns across different sites to see if patterns 
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are comparable across different geometric or regional factors. This will be applied in particular to a large 

sample of roundabout sites built in the province of Quebec in order to identify the impact of their different 

attributes on behaviour and safety.  
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